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FLUFFY
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* The Fast Loading User Facility Be(d,n) Target > HPGe Clovers
for Fission Yields (FLUFFY) was |
developed at LBNL to rapidly
shuttle actinide samples
between a neutron source and Cavedl PVC Pneumatic
counting array. Vault Tube
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* Transport times of <1 second
allow observation of short-
lived fission products.
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FLUFFY

* Flux: 7.2 x 108 n/cm?2/s

* This high flux along with
the rapid transport time
allows for the observation
of 80+% of the yield in
peak mass chains.
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July 2020 Experiment

| Total flux = 7.15 + 0.20 x 10° n/cm?/s]|
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* On July 21-26, 2020, %38U and %3>U
samples were irradiated at the Fast
Loading User Facility for Fission Yields
(FLUFFY) at LBNL's 88-inch cyclotron.

e 24 hours of 1 s-25 s 238U data (455.3 mg)
* 24 hours of 55-125 s 238U data (455.3 mg)
* ~16 hours of 1 s-25 s 23°U data (~20 mg)

* Neutron energy spectrum data for

14 MeV deuteron breakup on graphite
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The Experimental Data

* The experimental data produced by FLUFFY is y emissions as a
function of time since irradiation start, time since capsule arrival at
counting station, and as a function of the emitting product isotope:
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he FIER Model

* The Fission Induced Electromagnetic Response (FIER) code offers a
model that produces analogous FPY ¥y emission data.

Irradiation Scheme

SR F “ E R — Ny(Z; A; I) tO, tl, ncycles)

Global Time (s)

* Chi-squared minimization between FIER and experimental data is
used to determine fission yields and correct decay data:

o [N, (2, 4,1, to, t1, Neyeres) — FIER(Z, A, 1, to, t1, Neyeres)|
oy,



https://nucleardata.berkeley.edu/fier/

Mass Chain Analysis

e Example: A = 86

87 Br 87 Se
Y = 6.57E-01 Y = 8.48E-01
t;, = 5.56E+01 t;, = 5.50E+00
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M dSS C h d | N An d |yS | S too short-lived / too low yield

e Example: A = 86
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M dSS C h d | N An d |yS | S too short-lived / too low yield

e Example: A = 86
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Mass Chain Analysis

too short-lived / too low vield

e Example: A = 86

High-energy y’s have
lower backgrounds!
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Results

* An example of results from the A = 86 mass chain
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Y emission rates from the daughter
RES U ‘tS FP simultaneously constrain the FPY
and [, of the parent.

* An example of results from the A = 86 mass chain
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Fission Yield Correlation/Covariance Matrices




Motivation

* Neither the ENDF/B-VIII.O or JEFF-3.1 fission yield evaluations include
information on covariances between fission yields. [1,2]

* Covariances between fission yields affect several important
applications:
* Forensics and safeguards calculations
* Reactor antineutrino rates
* Reactor inventory, decay heat, and poisoning

[1] — Evaluation and Compilation of Fission Product Yields — T.R. England and B.F. Rider (1994) [2] — R. W. Mills, Fission product yield evaluation, Ph.D. thesis, University of Birmingham (1995)



Previous Work

* Pigni et al. — 2013

* Variance estimation with Wahl systematics

e Schmidt—-2013

e Parameter perturbation in the GEF code

e Leray et al. — 2017

e Parameter perturbation in the GEF code

e Kawano and Chadwick — 2013

e Bayesian method for 23°Pu FPY



Previous Work

* Pigni et al. — 2013
* Variance estimation with Wahl systematics

e Schmidt—-2013

e Parameter perturbation in the GEF code « Work by Pigni, Schmidt, and

* Leray et al. — 2017 Leray relies on an underlying
e Parameter perturbation in the GEF code model of fission and

e Kawano and Chadwick — 2013 parameter uncertainties.
 Bayesian method for 23°Pu FPY e Results of these work are not

readily accessible due in part
to ENDF format limitations.




Motivation

* The goal of this work is to generate a set of covariance matrices for
the fissioning systems of a given fission yield evaluation with as little
fission model bias/uncertainty as possible.

* This method seeks to use simple conservation rules in order to
constrain a sample space for Monte-Carlo estimation.

* The resulting covariance matrix will predominantly reflect the
evaluated uncertainties in the independent fission yields.

* Public availability of the covariance matrices is a high priority.



Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield:

X
i

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf



https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37_8_LF.pdf

Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield: Total Charge:

> Yi=2 > 21 = Zen
i i

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf



https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37_8_LF.pdf

Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield: Total Charge: Total Mass:

> vi=2 > 21 = Zen > AYi=Acy =7
i i i

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf
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Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield: Total Charge: Total Mass:
> vi=2 > 21 = Zen > AYi=Acy =7
i i i
Charge Parity:

> iz A) = ) VilZow = 23,49
i i

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf



https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37_8_LF.pdf

Conserved Relationships

* In order to obtain correlation, conserved quantities can be enforced
upon a set of resampled fission yields [1]:

Total Yield: Total Charge: Total Mass:
> vi=2 > 21 = Zen > AYi=Acy =7
i i i
Charge Parity: Mass Symmetry:
D YiZ1,4) = ) YiZow — Z1,A) PRIOES
[ [ A >ACN—V

[1] - Generation of Fission Yield Covariances to Correct Discrepancies in the JEFF Fission Yield Library — L. Fiorito et al. (2015) - https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015 May/SG37 8 LF.pdf



https://www.oecd-nea.org/science/wpec/sg37/Meetings/2015_May/SG37_8_LF.pdf

FY Covariance Matrix Generation

* The way in which a set of fission
vields are resampled can be
structured to conserve these
relationships:

* 1) Randomly selected the “light” or
“heavy” side of the fission product
spectrum to resample.

* 2) Randomly select (weighted by
uncertainty) a product in each A4
chain, resample its yield about its
evaluated uncertainty.

* 3) Scale all other yields in that A
chain by the same percent change.
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FY Covariance Matrix Generation

* The way in which a set of fission
vields are resampled can be
structured to conserve these
relationships:

* 1) Randomly selected the “light” or
“heavy” side of the fission product
spectrum to resample.

* 2) Randomly select (weighted by
uncertainty) a product in each A4
chain, resample its yield about its
evaluated uncertainty.

* 3) Scale all other yields in that A
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[1] — Evaluation and Compilation of Fission Product
Yields — T.R. England and B.F. Rider (1994)

Step 3 is allowed if the Z distribution for a given A is Gaussian,
which empirical data and the ENDF/B-VII.0 evaluation supports [1].




FY Covariance Matrix Generation

* 4) Normalize the resampled yields
such that they sum to 1.

0.10
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—— From P(v)

* 5) Generate the fission yields on the 008 s
complementary side of the fission
product spectrum using the neutron ">

multiplicity of the compound system.
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By Step 5 we’ve ensured all of the
conservation rules are met.




FY Covariance Matrix Generation

0 0.75
200 0.50
° 6) Repeat Steps 1-5) N IIII!IIII!IIIIH
times. Select N such that : s
statistical noise is 400, g
minimized. 2 0.00 S
> ©
* 7) Calculate the resulting o0 I
correlation matrix from i
the N trials. 800 050
100 -0.75
Correlation matrix for independent fission yields of 23°U fast fission. ~1.00




 Example: 13°Te

* Presented is the
covariance between
independent yields as
function of Z and A and
that of 13°Te.

* The evaluated yield for
135Te is 2.47 + 0.57%
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* Features:

o 135Te is positively
correlated with itself.
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* Features:

o 135Te is positively

correlated with itself.

* Products along the A
chain have positive
correlation.
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* Features:

o 135Te is positively
correlated with itself.

* Products along the A
chain have positive
correlation.

* This positive correlation
is reflected along a
complementary A = 99
chain.
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* Features:

o 135Te is positively
correlated with itself.

* Products along the A
chain have positive
correlation.

* This positive correlation
is reflected along a
complementary A = 99
chain.

* Products along A chains
that do not have
complementary Z have
negative correlation.
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Conclusions

* A model-agnostic method for independent fission yield covariance
matrix generation is being developed.

* This method has been successfully applied to all compound systems
in the ENDF/B-VIII.0 and JEFF-3.1 evaluations.

* The results demonstrate expected behavior and trends.

* Final results serve as an interim solution for independent fission yield
covariance matrices until a new evaluation is completed.
* The results are publicly available at nucleardata.berkeley.edu/FYCOM

* Publication accepted to Atomic Data and Nuclear Data Tables on April 20,
2021.







