

Update on short-lived and cumulative fission product yields from the NPML Collaboration

J.T. Harke, B. Bandong LLNL

T.A. Bredeweg LANL

B. Pierson, J.Friese PNNL

November 2021

Lawrence Livermore National Laboratory

UNCLASSIFIED

Multi-Lab multi-disciplinary collaboration

LLNL

- J.T. Harke
- B. Bandong
- S. Burcher
- S. W. Padgett
- J. Goodell
- J. Church
- P. Zhao
- N. Gharibyan
- N. Harward
- R.A. Henderson
- K. Roberts
- P. Yap-chiongco
- G. Slavik

Pacific Northwest

Office of Defense Nuclear Nonproliferation R&D

- **PNNL**
- T. Bredeweg S. Hanson D. Hayes J. Hutchinson

LANL

I. May

J. Goda

J. Walker

- J. Friese B. Pierson L. Greenwood S. Stave A.M. Prinke L.A. Metz S. Herman
- N. Uhnak
- M. Haney

Oregon State University

- A.S. Tamashiro
- C. Palmer
- T. Palmer
- S. Reese
- S. Menn
- L. Minc

Introduction

Motivation:

There have been few short-lived fission product yield studies since the publication of the England and Rider report in 1993 (28 years). The yields in the England and Rider report are a collection of results from experiments occurring from the 1950s through to the early 1990s. Integral cross-section measurements in unperturbed fast fission neutron fields are rare but crucial data for a range of applied fields (criticality safety, reactor operations, etc...)

Approach:

Project is conducting the first set of self consistent irradiations of major actinides in nearly 30 years using:

- Long irradiations with fission chambers for an absolute fission basis estimate of yields
- Long irradiations of high purity mixed foil sets for cross-section measurements
- Prompt (< 60 µs) fission neutron bursts for relative fission yield measurements

High quality nuclear data essential to data evaluation and modeling;

- Improve nuclear data libraries
- Provide valuable nuclear data references for the nuclear science community

UNCLASSIFIED

3

Neutron Sources

Operations conducted at the NCERC include both subcritical and critical experiments with the ability to measure a wide variety of nuclear properties.

Flattop (NCERC)

- Fast/fission Spectrum
- Horizontal ("traverse") glory hole
- 10¹³ fissions/g on samples

Cumulative FPY Task Days to weeks post irradiation

Office of Defense Nuclear Nonproliferation R&D

Godiva IV (NCERC)

- Fast/fission neutron spectrum
- Super-Prompt Critical Operations
- Vertical glory hole for samples
- $1-4 \times 10^{16}$ Total Fissions / burst

Short-Lived FPY Task Hours to days post irradiation

UNCLASSIFIED

D-T Generator (PNNL)

- Thermo D711 neutron generator
- Low scatter facility at PNNL
- Max neutron flux of 1×10⁹ n/cm²/s
- New D-T source at LLNL Jan-2022

Cumulative FPY Task Days to weeks post irradiation

Time scales of isotopes we can investigate

UNCLASSIFIED

Fission product isotopes cover a wide range of time scales from microsecond to day++ half-lives.

We can currently make measurements:

- At the 10s of minutes time scales by whole gamma counting
- Hours/days by performing radiochemistry and beta/gamma counting

Short-Lived Fission Product Yields (SLFPY)

Office of Defense Nuclear Nonproliferation R&D

Np237 Data Time Dependent Spectra Example

- Currently, we can retrieve the sample from Godiva ~30-40 minutes after the burst mode operation. Then begin measuring gamma-ray spectra at about 1 hour.
- Fit a peak in each in time bin and plot the intensity versus time (decay curve) - Use half-life and γ -ray energy to identify isotope
- Use decay curve to extract the activity of the isotope immediately after irradiation Short Time Scale Data (Detector 8815) Long Time Scale Data (Detector 8815)

(hours)

Time 160

180

10⁶

Courtesy Sean Burcher

Technical Approach: identifying gamma rays Time dependent gamma ray spectra from 45 minutes to 7 days post-irradiation

List mode data taken with high resolution HPGe detectors to perform the gamma-ray spectroscopy is essential to unfolding the very complex spectra obtained from fission products.

Np237 Results : Example ⁹³Y

Results for ²³⁷Np FPYs

- Fission Product yields for 45 unique isotopes/isomers have been measured
 - Using 191 different γ -rays
 - Isomer Yields
- Half-lives ranging from 10s of minutes to a few days.
- Use multiple γ -rays from each decay if possible
 - Reduces sensitivity to systematic uncertainties introduced by potentially imprecise nuclear data

Results for ²³⁷Np FPYs : Investigating Nuclear Data

- Using multiple γ-rays can highlight areas where current evaluated branching ratios may be incorrect
- Example: ¹²⁹Sb
 - Using the 761.3 keV γ -ray to measure FPY would produce a different result
 - The other 3 observed γ -rays produce a consistent value for FPY
- Indicates that there could be an issue with the branching ratio for the 761.3 keV γ-ray
 - In this case it appears that the ENSDF/B VIII.0 FPY value was measured using the 761.3 resulting in an inaccurate FPY

Lawrence Livermore National Laboratory

UNCLASSIFIED

Office of Defense Nuclear Nonproliferation R&D

11

Past Results from ²³⁵U, ²³⁸U, ²³⁹Pu

	Isotope	Energy (keV)	ENDF/B VII.1 FY (%)	1σ -abs.	Meas. FY (%)	1σ -abs.	% Diff.
	$^{+ 84g}Br$	881.6	1.192	0.041	1.187	0.128	-0.419
	+ ⁸⁹ Rb	1032	4.37	0.48	3.99	0.36	-8.70
	91 Sr	1384	5.73	0.12	5.27	0.36	-8.03
	^{93}Y	267	6.25	4.00	6.06	0.99	-3.04
	$^{+ 94}Y$	919	6.300	0.088	5.34	0.38	-15.2
	97 Zr	743	6.003	0.084	5.85	0.45	-2.55
	¹⁰¹ Mo	192	5.24	0.20	4.95	0.39	-5.53
	105 Ru	724	1.196	0.072	1.243	0.086	3.93
	128 Sn	482	0.49	0.32	0.487	0.073	-0.612
2511 - 1	¹²⁹ Sb	813	0.70	0.18	1.073	0.077	53.29
	+ ^{130g} Sb	793	0.93	0.60	0.513	0.055	-44.8
	¹³¹ Sb	943	2.92	0.18	2.52	0.259	-13.7
	^{131m} Te	774	0.43	0.19	0.581	0.048	35.1
	^{133}I	530	6.72	-0.70	6.60	0.50	-1.79
	$^{+134}$ Te	767	6.57	0.18	5.73	0.36	-12.8
	$^{+ 134}$ I	847	7.641	0.076	6.82	0.66	-10.7
	¹³⁵ I	1132	6.30	0.25	6.02	0.54	-4.44
	$^{+138}$ Xe	434	6.01	0.08	5.65	0.57	-5.66
	^{141}Ba	304	5.95	0.24	5.34	0.51	-10.3
	† ¹⁴² Ba	255	5.51	0.11	5.238	0.442	-4.94
	$^{+ 142}$ La	641	5.542	0.078	5.241	0.430	-5.43

ENDF/B VIII.0 FY $\pm 1\sigma$ Meas. FY $\pm 1\sigma$ Isotope ^{84g}Br ‡ 0.822(23)0.875(89) ^{93}Y 4.910(31) 4.621(767) ${}^{94}Y$ ‡ 4.610(184) 5.084(488) $^{104}\mathrm{Tc}$ 5.036(101)4.841(353)0.284(182)0.236(34) $^{129}\mathrm{Sb}$ 1.011(162)0.644(63) $^{130\mathrm{g}}\mathrm{Sb}$ ²³⁸U FY 0.926(593 0.487(43) $^{130}\mathrm{Sb}$ 0.866(43) [28] 0.264(42)0.276(20)133_I 6.760(4326)7.296(547) $^{134}\mathrm{I}\ \ddagger$ 7.60(456)8.076(606) ¹³⁵I 6.941(97)7.334(557)¹³⁸Xe ‡ 5.702(160)5.694(547) 139 Ba 5.670(113)6.338(602) 141 Ba 5.336(320) 5.028(513) 142 Ba \ddagger 4.581(183) 3.927(401) $^{142}La \ddagger$ 4.586(92)4.991(359)Lawrence Livermore National Laboratory ¹⁴⁶Ce ‡ 3.445(96)3.251(348) $^{149}\mathrm{Nd}$ 1.625(65)1.664(150)

		•						
	ENDF	VII.0/B	Small Target		Large Target			
Isotope	FY	±	FY	±	Ratio	FY	±	Ratio
Kr-85m	0.59	0.01	0.58	0.03	0.98	0.62	0.03	1.05
Rb-89	1.72	0.07	1.69	0.08	0.98			
Y-93	3.82	2.45	3.58	0.29	0.94	3.36	0.25	0.88
Y-94	4.22	0.06	4.13	0.19	0.98			
Mo-101	6.67	0.27	6.37	0.29	0.96			
Ru-105	5.36	0.21	5.51	0.25	1.03	5.52	0.25	1.03
Rh-107	3.22	0.52	3.19	0.16	0.99			
Sb-127	0.50	0.16				0.530	0.02	1.06
Sn-128	0.79	0.51	0.64	0.03	0.81	0.75	0.07	0.94
Sb-129	1.45	0.12	1.49	0.07	1.03	1.32	0.06	0.91
Sb-131	2.89	0.32	1.87	0.09	0.65			
Te-131	3.11	0.50	4.72	0.74	1.52			
Te-131m	0.92	0.41	1.52	0.08	1.66	1.28	0.06	1.39
I-131	3.88	0.04	3.18	0.23	0.82	4.09	0.19	1.06
Te-132	5.15	0.10	5.49	0.25	1.07			
I-133	6.91	4.42	6.28	0.30	0.91	6.83	0.32	0.99
Te-134	4.79	0.29	3.60	0.16	0.75	3.46	0.23	0.72
I-135	6.08	0.24	5.84	0.26	0.96	5.92	0.27	0.97
Xe-138	4.71	0.09	4.36	0.22	0.93			
Cs-139	5.37	0.43	4.36	1.06	0.81			
Ba-139	5.61	0.11	5.88	0.39	1.05	6.44	0.55	1.15
Ba-140	5.32	0.07	5.66	0.70	1.06	5.02	0.23	0.94
Ba-141	5.08	0.30	4.90	0.22	0.97			
Ce-141	5.15	0.14				4.57	0.21	0.89
Ba-142	4.48	0.49	3.82	0.21	0.85			
La-142	4.75	0.07	5.17	0.23	1.09	5.12	0.23	1.08
Ce-143	4.34	0.02	3.59	0.17	0.83	4.09	0.18	0.94
Ce-146	2.42	0.10	1.81	0.11	0.75			
Nd-147	1.99	0.03				1.77	0.09	0.89
Pr-147	1.99	0.06	2.01	0.14	1.01			
Nd-149	1.24	0.02	1.23	0.06	0.99	1.18	0.06	0.95
Pm-151	0.78	0.01				0.73	0.05	0.93
Sm-153	0.43	0.03				0.43	0.02	1.01

Preliminary ²³⁹Pu FY

Office of Defense Nuclear Nonproliferation R&D

UNGLASSIFIED

Highlighted in GREEN are improved measurements

Integral Measurement ${}^{237}Np(n,\gamma){}^{238}Np$ Cross Section

13

- γ-rays from the decay of ²³⁸Np were observed in the time dependent spectrum
- Activity of ²³⁸Np was used to determine the amount of ²³⁸Np produced during the irradiation

NCERC Flattop assembly irradiation and modeling to evaluate the ⁹Be(n,γ)¹⁰Be cross section at fission energies Courtesy of Jack Goodell, Jennifer Church and Bryan Bandong

U.S. DEPARTMENT OF ENERGY

We are aiming to return to Oregon State University Jan-2022 to perform the short time scale U238 irradiations

Rabbit shuttle injection station

OSU TRIGA reactor pulsed

Office of Defense Nuclear Nonproliferation R&D

U.S. DEPARTMENT OF

Reports with compendia of results for SLFPY

- "Interim Report on Fission Product Yields from the Irradiation of Np237 using the Godiva Critical Assembly", S. Burcher et al. Sept. 2020 LLNL-TR-1023214
- "Report on Short-Lived Fission Product Yields from Pu239", S. Padgett et al. LLNL-TR-799578 Dec 2019
- "Interim Report on Short-Lived Fission Product Yields from U238", J.T. Burke et al. LLNL-TR-738508 Sept 2017
- "Interim Report on Short-Lived Fission Product Yields from U235", J.T. Burke et al. LLNL-TR-704065 Sept 2016
- "Improved Cumulative Fission Yield Measurements with Fission Spectrum Neutrons on ²³⁵U," Nuclear Data Sheets, 155, 86–97, Jan. 2019, doi: <u>10.1016/j.nds.2019.01.005</u>
- "Improved Cumulative Fission Yield Measurements with Fission Spectrum Neutrons on 238U," Nuclear Data Sheets, 163, 249–260, 2020, doi: <u>10.1016/j.nds.2019.12.006</u>.

Lawrence Livermore National Laboratory

Cumulative Fissions Product Yields and the R-Value

UNCLASSIFIED

17

An R-value is the ratio of the yield of a FP (i) to the yield of ⁹⁹Mo (i = 99) in an unknown, relative to the same FP ratio from thermal fission (k = th) of ²³⁵U (j = 25).

Developed in the late 40's such that a number of calculational inputs cancel out, such as $\Phi_n(E_n, t)$.

$$R_i^{j,k} = \left(\frac{A_i^{j,k}/A_{99}^{j,k}}{A_i^{25,th}/A_{99}^{25,th}}\right) = \left(\frac{Y_i^{j,k}/Y_{99}^{j,k}}{Y_i^{25,th}/Y_{99}^{25,th}}\right)$$

$$Y_i^{j,k} = \frac{(1+\alpha_i)A_i^{j,k}}{\lambda_i \epsilon_i f_i N_f^*}$$

- G.P. Ford and A.E. Norris, LA-6129 (1976)
- H.D. Selby, et al., Nucl Data Sheets 111, 2891 (2010)
- M.B. Chadwick, et al., Nucl Data Sheets 111, 2923 (2010)
- J. Laurec, et al., Nucl Data Sheets 111, 2965 (2010)

Office of Defense Nuclear Nonproliferation R&D

U.S. DEPARTMENT OF NERGY

U.S. DEPARTMENT OF ENERGY

Execution

- Actinides for FPY measurements by:
 - Direct counting
 - Radiochemistry
- Stacked foils for integral cross-section measurements in- and ex-core
- Irradiation at NCERC & Other (NNSS/DAF)
- Sample assay @ NCERC
 - LANL/LLNL counting facilities (HPGe coincidence)
- Sample shipping (from NNSS/DAF to labs)
 - Assay by gamma & beta
 - Post assay of list-mode data

$$R_i^{j,k} = \left(\frac{A_i^{j,k} / A_{99}^{j,k}}{A_i^{25,th} / A_{99}^{25,th}}\right) = \left(\frac{Y_i^{j,k} / Y_{99}^{j,k}}{Y_i^{25,th} / Y_{99}^{25,th}}\right)$$

Lawrence Livermore Elevernore Received Automatic Laboratory

Outlier	ENDF/B	LANL	PNNL
¹¹¹ Ag (β)	1.76	2.76	n/a
¹¹¹ Ag (γ)	1.76	n/a	3.30
¹³⁶ Cs (β)	0.69	2.22	n/a
¹³⁶ Cs (γ)	0.69	n/a	2.47
¹⁵³ Sm (β)	1.08	1.28	n/a
¹⁵³ Sm (γ)	1.08	0.95	1.20

Cumulative Fission Product Yield **Sample Preparation**

- Sample preparation (can involve more than one lab)
 - Select stock material and determine/verify chemical and isotopic composition
 - Actinides, e.g. ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁹Pu, in 100s of milligram quantities
 - Geometric characterization of all target foils (mass and dimensions)
 - Sample containment prior to shipping (containment of Pu samples is part of the NPML)
- Sample shipping NCERC
 - Current experimental activities involve multiple actinide (SNM) samples

Office of Defense Nuclear Nonproliferation R&D

Cumulative Fission Product Yields: Previous work

The lower panel shows the absolute difference between the experimental values determined by β counting (black circles) and γ counting (red circles) and ENDF/B-VII.1.

Previous measurements on the Flattop assembly

²³⁵U, ²³⁸U, ²³³U, ²³⁷Np and ²³⁹Pu (no fission chambers)

UNCLASSIFIED

	Outlier	ENDF/B	LANL	PNNL		
	¹¹¹ Ag (β)	1.76	2.76	n/a		
	¹¹¹ Ag (γ)	1.76	n/a	3.30		
	¹³⁶ Cs (β)	0.69	2.22	n/a		
	¹³⁶ Cs (γ)	0.69	n/a	2.47		
	¹⁵³ Sm (β)	1.08	1.28	n/a		
	¹⁵³ Sm (γ)	1.08	0.95	1.20		

Office of Defense Nuclear Nonproliferation R&D

U.S. DEPARTMENT OF

Results For Experiments #4253 and 4256 (HEU)

- Comparison of current R-value results with R-values ٠ calculated from ENDF/B-VII.0 cumulative fission product yields for fission of ²³⁵U from 0.5 (fission) and 14 MeV neutrons.
- Difference, $\Delta R = R_H R_n$, between R-values determined • from the high-power run (H) and those calculated for ENDF fission (n = ENDF) and from the low-power run (n= L).
- There is very good agreement between both data sets • and ENDF for peak yield fission products, where we expect to see little fluctuation with incident neutron energy. However, differences can be seen in the valley and high mass wing.

UNCLASSIFIED

Office of Defense Nuclear Nonproliferation R&D

U.S. DEPARTMENT OF ENER

 \mathbf{C}

Results For Recent Experiments #4510 (PNNL DU), #4512 (LANL DU)

- Irradiation of DU at NCERC on Flattop in April 2021, samples split between LANL and PNNL.
- Comparison of R-values determined through whole A-solution or radiochemical separations performed by LANL and PNNL on a DU compared ENDF.V.III.0
- There is excellent agreement between the two laboratories and calculated ENDF values with some notable improvements to R-value uncertainties

• ⁹¹Y, ¹³⁶Cs

U.S. DEPARTMENT OF

FNFRGY

UNCLASSIFIED

Office of Defense Nuclear Nonproliferation R&D

22

Fission Chamber Performance

Pulse height spectra from the Mark II fission chamber

- Benchtop testing with ²⁵²Cf
- Testing at MIT with ²³⁵U
- Both using P-10 fill gas

MIT Nuclear Reactor Laboratory

Results

MIT FC Tests 9-13-21 (1/2 gap)

The red curve is "zero" threshold. The black curve is the same settings used during the Flattop irradiation in April.

Need to confirm with ²⁵²Cf, then correct detector efficiency for the high threshold.

Office of Defense Nuclear Nonproliferation R&D

Radiochemistry Results (R-values)

	Isotope	Beta or gamma	R	±%	Atoms/g target	±%	Notes
	⁸⁹ Sr	В	0.921	2.4	3.15E+10	2.2	
	⁹¹ Y	в	0.888	4.6	3.75E+10	4.5	
	⁹⁵ Zr	G	0.973	3.8	4.58E+10	3.0	Beta analysis - within one s
	⁹⁷ Zr	G	0.986	3.8	4.27E+10	3.1	Beta analysis - within one s
	⁹⁹ Mo	В	7.24E+11	2.2	4.43E+10	2.2	R- value column used to report fissions/g target
-	¹¹¹ Ag	В	2.79	2.9	3.52E+08	2.8	
╋╸	¹¹⁵ Cd	В	3.15	3.8	2.65E+08	3.7	
•	^{115m} Cd	В	-	-	-	-	Too few counts to fit beta data with confidence
	¹³⁶ Cs	G	2.28	5.7	9.81E+07	5.2	
	¹³⁷ Cs	G	1.07	3.6	4.81E+10	2.8	
	¹⁴⁰ Ba	В	0.904	2.7	4.07E+10	2.5	Beta analysis - within one s
	¹⁴¹ Ce	-	-	-	-	-	Incomplete analysis
	¹⁴³ Ce	-	-	-	-	-	Incomplete analysis
	¹⁴⁴ Ce	-	-	-	-	-	Incomplete analysis
	147Nd	в	0 927	69	1 51E+10	6.8	A beta 'no absorber' measurement, within 1 s of the beta 'with absorber and gamma measurements
	¹⁵³ Sm	В	1.33	10.7	1.29E+09	10.6	High uncertainty driven by low gravimetric yield
	¹⁵⁶ Eu	В	1.59	6.3	1.72E+08	6.2	
	¹⁶¹ Tb	-	-	-	-	-	Analysis not attempted
UNCLASSIFIED HEU Low-power Irradiation							

Fission Product Yield Evaluations

- Data from this and other projects will feed into a new FPY evaluation that will happen over the next few years.
- Regular interactions with another NA-22 funded multi-lab project "Evaluation of Energy Dependent Fission Product Yields"
 - LANL (leading lab) develops FPY models and produce the final FPY data files
 - BNL compiles experimental FPY data and produces a set of recommended FPY values, performs FPY data validation calculations
 - LBNL performs measurements of energy-integrated and differential CNAA (Cyclical Neutron Activation Analysis) using the intense neutron source by the LBNL cyclotron, and data interpretation by the FIER code
 - PNNL develops a new Bragg curve-based fission TPC (Time Projection Chamber) analysis in collaboration with LANL and LLNL
 - LLNL develops theories and methods to calculate primary fission fragment yields, and performs FREYA calculations for prompt decay
- The theory effort draws on the experimental results of several experimental activities funded by federal agencies through the Nuclear Data Interagency Working Group

UNCLASSIFIED

Thanks for your time and attention.

Contact info for team members who can help with questions:

harke2@llnl.gov - SLFPY

toddb@lanl.gov – CFPY/rad-chem

friese@pnnl.gov - CFPY/rad-chem

bandong1@llnl.gov - AP

bruce.pierson@pnnl.gov - SLFPY

church4@llnl.gov – AP

tonchev2@llnl.gov – SLFPY – mono-energetic TUNL

Office of Defense Nuclear Nonproliferation R&D