Generation of Angular Momentum in Fission

Ramona Vogt (LLNL & UC Davis) Jorgen Randrup (LBNL)

LLNL-PRES-829229

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Recent experimental information on spin correlations

Angular momentum generation in nuclear fission, J. N. Wilson *et al.*, Nature **590** (2021) 566

Minimum spin demanded for fragment 2

OBSERVATION:

``There is no significant correlation between the spins of the fragments"

INTERPRETATION:

Therefore ``the fragment spins are generated after the nucleus splits", i.e. ``after the fragments have become two separate, independent systems"

Mechanism of fragment spin generation: Nucleon exchange in the dinucleus

Relevant theory of nucleon exchange

Damped heavy-ion collisions, W.U. Schröder and J.R. Huizenga, Ann. Rev. Nucl. Sci. (1977) 465

Intimate relationship between nucleon exchange and energy dissipation

Theory of transfer-induced transport in nuclear collisions, J. Randrup, Nucl. Phys. A327 (1979) 490:

Each transfer changes the nucleon numbers and the excitation energies of the fragments, as well as their linear & angular momenta

Transport of angular momentum in damped nuclear reactions, J. Randrup, Nucl. Phys. A383 (1982) 468:

Mobility (friction) tensor: anisotropic

*Dynamical evolution of angular momentum in damped nuclear react*ions, T. Døssing and J. Randrup, Nucl. Phys. **A433** (1985) 215:

Relaxation times $t_{\rm wriggling} \ll t_{\rm bending} \& t_{\rm twisting} \iff t_{\rm tilting}$ fast slow

Normal rotational modes of a dinucleus at scission

Studies in the liquid-drop theory of nuclear fission, J.R. Nix and W.J. Swiatecki, NP 71 (1965) 1

Diagonalization of the rotational energy in fission

The fragment spins are determined at scission

Fragment angular momenta are correlated due to normal modes but are nearly independent nonetheless

Dominance of fluctuations results in very weak fragment spin correlation

We can calculate the direction and magnitude of spin correlations

spin-spin
correlation
$$c(\mathbf{S}_L, \mathbf{S}_H) \equiv \frac{\langle \delta \mathbf{S}_L \cdot \delta \mathbf{S}_H \rangle}{[\langle \delta S_L^2 \rangle \langle \delta S_H^2 \rangle]^{1/2}} = -\left[\frac{\mathcal{I}_L \quad \mathcal{I}_H}{(\mathcal{I}_R + \mathcal{I}_L)(\mathcal{I}_R + \mathcal{I}_H)}\right]^{\frac{1}{2}} \ll 1$$

coefficient:

Correlation between the spin *directions*:

Correlation between the spin magnitudes:

	Case:	235 U(<i>n</i> , f)	238 U(<i>n</i> , f)	239 Pu (n, f)	²⁵² Cf(sf)
7	$ar{S}_L = \langle S_L angle$	4.27	4.43	4,58	5.08
	$ar{S}_H = \langle S_H angle$	5.66	5.80	5.93	6.33
	$c(S_L, S_H)$ (%)	0.2	0.2	0.1	0.1
	<i>f</i> ₁ (%)	-8.2	-8.3	-8.3	-8.4

magnitude correlation coefficient:

$$c(S_L, S_H) \; \equiv \; rac{\langle \delta S_L \delta S_H
angle}{[\langle \delta S_L^2
angle \, \langle \delta S_H^2
angle]^{1/2}}$$

JR & RV, PRL 127 (2021) 062502, RV & JR, PRC 103 (2021) 014610

Even highly correlated contributions can result in uncorrelated results

Many rolls of the dice:

The red & blue dice are cast for many rounds: Alice's score is the sum of the top faces; Bob's score is the sum of the top of the red dice and the bottom of the blue dice

Alice	Bob				
<mark>6</mark> + 5 = 11	<mark>6 + 2 =</mark> 8				
2 + 1 = 3	<mark>2 + 6</mark> = 8				
1 + 5 = 6	1 + 2 = 3				
3 + 3 = 6	<mark>3 + 4</mark> = 7				
5 + 4 = 9	<mark>5 + 3 =</mark> 8				
2 + 4 = 6	<mark>2 + 3</mark> = 5				
3 + 5 = 8	<mark>3 + 2</mark> = 5				
5 + 3 = 8	<mark>5 + 4 = 7</mark>				
1 + 4 = 5	1 + 3 = 4				
2 + 1 = 3	<mark>2 + 6</mark> = 8				
·····					
The two score sequences are <u>not</u> correlated					

In each round, the score contributions for Bob are fully correlated with the corresponding score contributions for Alice

Nevertheless, Bob's scores are uncorrelated with Alice's scores

Wilson et al. also measured fragment spins:

Measured S(A) is sawtooth-like, similar to v(A), and, possibly, $v_{\gamma}(A)$ although new measurements should be made to confirm this behavior

We can model S(A) of the fragments & compare to data

Default moments of Inertia in FREYA have a simple dependence on mass:

 $I_{\rm L} \propto (1/2)M_LR_L^2 = I_{\rm H} \propto (1/2)M_HR_H^2$ This simple dependence means that S(A) has a weak dependence on A

If the default moments of inertia are replaced by moments of inertia that schematically depend on the ground state deformation of the fragments,

 $I'_{f}(A_{f}) = 0.2[I_{rig}(A_{f};0)+10(I_{rig}(A_{f};\epsilon(A_{f}))-I_{rig}(A_{f};0))],$

where $\boldsymbol{\epsilon}$ is obtained from a fit to the ground state deformations

Modeling of moments of inertia reinforced by microscopic models

Spin distributions calculated recently in microscopic models

P. Marevic, N. Schunck, J. Randrup and R. Vogt, PRCL 021601 (2021) – Editor's Suggestion

Spin distribution fitted by:

$$|a_J|^2 \propto (2J+1)e^{-J(J+1)/2\sigma^2}$$

Where $\sigma^2 = \mathcal{J}$, the spin cut-off parameter ∞ the moment of inertia

However, $\boldsymbol{\mathcal{I}}$ is the moment of inertia at scission

- Analytical formulas are rough approximations
- Deformation at scission could be very different than in the ground state

Angular Momentum Projection Allows Us to Calculate S(A) in Microscopic Models

First-ever microscopic prediction of spin distributions across a broad range of Fragmentations, used to simulate γ emission in FREYA: good agreement with Wilson et al (albeit for ²³⁹Pu(n,f))

• Extract spin distribution from HFB solutions by angular momentum projection

FREYA references

- FREYA developed in collaboration with J. Randrup (LBNL); neutron-transport code integration by J. Verbeke (LLNL); available in MCNP6.2
- FREYA journal publications: Phys. Rev. C 80 (2009) 024601, 044611; 84 (2011) 044621; 85 (2012) 024608; 87 (2013) 044602; 89 (2014) 044601; 90 (2014) 064623; 96 (2017) 064620; 99 (2019) 054619; 103 (2021) 014610; Phys. Rev. Lett. 127 (2021) 062502;
- Parameter optimization for spontaneous fission: NIM A 922 (2019) 36
- **FREYA** published in Comp. Phys. Comm. **191** (2015) 178; **222** (2018) 263.
- "Nuclear Fission", Chapter 5 of '100 Years of Subatomic Physics', World Scientific, 2013
- Review in Eur. Phys. J. A **54** (2018) 9
- Papers with experimentalists: neutron polarization in photofission: Mueller *et al*, Phys. Rev. C 89 (2014) 034615; photon production: Gjerstvang *et al.*, Phys. Rev. C 103 (2021) 034609; neutron-gamma correlations: Wang *et al*, Phys. Rev. C 93 (2016) 014606, Marcath *et al*, Phys. Rev. C 97 (2018) 044622, Marin et al, NIM A 968 (2020) 163907, PRC 104 (2021) 024602; neutron-neutron correlations, Schuster et al, Phys. Rev. C 100 (2019) 014605; Verbeke *et al*, Phys. Rev. C 97 (2018) 044601; Pozzi *et al*, Nucl. Sci. Eng. 178 (2014) 250.
- Fission in Astrophysics: Vassh *et al.*, J. Phys. G 46 (2019) 065202; Wang *et al.*, Ap. J. Lett.
 903 (2020) L3
- Isotopes currently included: spontaneous fission of ²⁵²Cf, ²⁴⁴Cm, ^{238,240,242}Pu, ²³⁸U and neutroninduced fission of ^{233,235,238}U(n,f), ^{239,241}Pu(n,f) for E_n ≤ 20 MeV

