

Beta Delayed Neutrons & Electrons

Alejandro Sonzogni

Beta-delayed neutrons activity

- Delayed neutron multiplicity (delayed nu-bar) and 6 decay constants (λ_i) values are found in MT=1 and MF=455.
- $\label{eq:constraint} \square \mbox{ JEFF uses the same 8 λ_i} \\ \mbox{ values.}$

 $\Box A=\Sigma a_i x \exp(-\lambda_i x t)$

- Divided by the Keepin 6exponential fitting to precisely measured activities.
- Up to 20% differences with Keepin and JEFF.
- Issues raised recently by INL & ORNL

National Laboratory

Beta-delayed neutrons activity

□ Comparison for ²³⁹Pu

- \Box A= Σ a_i x exp(- λ_i x t)
- Divided by the Keepin 6exponential fitting to precisely measured activities.
- The ENDF/B-VII.0 activity is a lot closer to Keepin.
- Note that the delayed nu-bar is not included here.

 \Box v_d(VI.8) = v_d (VII.0) = 6.45E-3

Beta-delayed neutrons

Disagreement between ENDF/B-VIII.0 delayed neutron activity with Keepin and JEFF persists for other actinides, i.e. ²³³U and ²³⁸U.

Beta-delayed neutrons spectrum

Probabilities (ai) and spectra for each of the groups are found in MT=5 MF=455.

❑ Group spectra plus the total one plotted for ²³⁵U.

Beta-delayed neutrons spectrum

□ Comparison for ²³⁵U

$$\Box S = v_d x \sum a_i x S_i x \exp(-\lambda_i x t)$$

□ t=40 seconds.

About 30-40% differences between ENDF/B and JEFF.

Beta-delayed neutrons Spectrum

□ Comparison for ²³⁹Pu

- $\square S=_{V_d} x \sum a_i x S_i x \exp(-\lambda_i x t)$
- □ t=40 seconds.
- About 30-40% differences between current ENDF/B and JEFF.

Beta-delayed neutrons – path forward

- We propose to review and update the MT=1 MF=455 and MT=5 and MF=455 sections.
- Project will capitalize on the expertise developed in the recently completed IAEA Coordinated Research Project on Beta-delayed neutron emission, <u>Vivian Dimitriou et al</u>.

Check for updates Available online at www.sciencedirect.com

ScienceDirect

Nuclear Data Sheets 173 (2021) 144–238

Nuclear Data Sheets

www.elsevier.com/locate/nds

Development of a Reference Database for Beta-Delayed Neutron Emission

P. Dimitriou,^{1,*} I. Dillmann,^{2,3} B. Singh,⁴ V. Piksaikin,⁵ K.P. Rykaczewski,⁶ J.L. Tain,⁷ A. Algora,⁷ K. Banerjee,⁸ I.N. Borzov,^{9,10} D. Cano-Ott,¹¹ S. Chiba,¹² M. Fallot,¹³ D. Foligno,¹⁴ R. Grzywacz,^{15,6} X. Huang,¹⁶ T. Marketin,¹⁷ F. Minato,¹⁸ G. Mukherjee,⁸ B.C. Rasco,^{19,6,15,20} A. Sonzogni,²¹ M. Verpelli,¹ A. Egorov,⁵ M. Estienne,¹³ L. Giot,¹³ D. Gremyachkin,⁵ M. Madurga,¹⁵ E.A. McCutchan,²¹ E. Mendoza,¹¹ K.V. Mitrofanov,⁵ M. Narbonne,¹³ P. Romojaro,¹¹ A. Sanchez-Caballero,¹¹ and N.D. Scielzo²²

□ For minor actinides, the microscopic data – fission yields and decay data – are of much higher fidelity now and can be used with higher confidence.

Would interact with validation committee members to ensure improved benchmarks C/E values.

❑ Would require 2-3 years, in time for ENDF/B-VIII.1 release.

- Measurements of gamma and beta spectra by Kirk Dickens and collaborators in the 1970s, to quantify decay heat in a Loss Of Coolant Accident scenario.
- □ Core irradiation with a rabbit system.
- \Box Oak Ridge Research Reactor, 1-10 µg foils.
- Number of fissions determined from ⁹⁷Nb, ⁹⁹Mo, ¹³²Te Gammas, 1.5% uncertainty.

 Measurements are compared with summation calculations, ENDF/B-VIII.1β decay and JEFF-3.3 yields, which highlights the 25 most important contributors.

 Good agreement is seen for ²³⁵U, in this case 1 S irradiation, 6.7 S wait, and 3 S counting.

There is an overprediction for ²³⁹Pu at energies higher than 3.5 MeV.

Independent yields could be adjusted to match measured spectra.

Independent yield correlations would be needed.

For ²⁴¹Pu, the agreement is quite good, but we see a slight overprediction at around 4 MeV.

Beta-delayed antineutrinos

This body of data was used to obtain the equilibrium antineutrino spectrum in 1981, with surprisingly good agreement with current summation results.

Beta delayed electrons (and gammas) future work.

□ Complete digitizing the data and submit it to EXFOR.

- Obtain R59, R51 and R19 values as function of electron energy, including uncertainty estimates.
- Fit Independent Fission Yields to match measured electron and gamma spectra.

