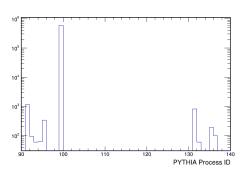

Two-Particle Correlation Updates

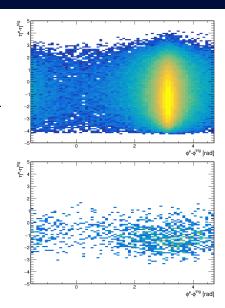
N. Grau

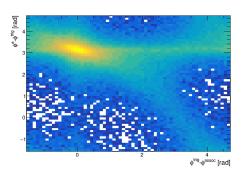
Augustana University


October 1, 2021

Two-Particle Correlations in PYTHIA

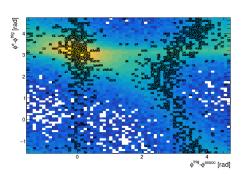
- ▶ 600k Events of 18×100 PYTHIA 6 with $Q^2 > 100$ GeV²
- ▶ $p_T > 1$ GeV/c and $-3 < \eta < 2$ for charged hadrons
- ▶ Trigger is highest p_T , Associated is next highest p_T
- ► Single jet events dominate.


PYTHIA Processes


- ▶ 99 = LO DIS
- ▶ 91-95 = elastic, diffractive, and low-p_T processes
- ► 130-140 = QCD Compton, photon-gluon fusion processes
- ▶ QCD Compton and photon-gluon fusion $\sim 500 x$ smaller than LO DIS for $Q^2 > 100 \text{ GeV}^2$.

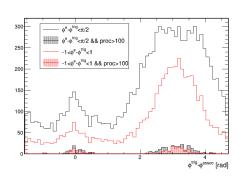
Scattered electron-hadron Correlations

- Scattered electron correlation with trigger hadron looks like back-to-back dijet hadroproduction.
- ► Top: All processes. Bottom: QCD Compton + Photon-Gluon Fusion
- ▶ Bottom has much broader $\Delta \phi$ correlation
- ▶ In hadroproduction of jets expect 3-jets when two leading jets have $\Delta \phi > 2\pi/3$, i.e. the Mercedes angle.



Three Particle Correlations: scattered electron + leading dihadrons

- ▶ When electron and leading hadron are not back-to-back, there is a larger dihadron $\Delta \phi = \pi$ distribution.
- ► This holds for the QCD Compton + Gluon Fusion processes (black histogram)


Three Particle Correlations: scattered electron + leading dihadrons

- ▶ When electron and leading hadron are not back-to-back, there is a larger dihadron $\Delta \phi = \pi$ distribution.
- ► This holds for the QCD Compton + Gluon Fusion processes (black histogram)

Isolating the Dihadron Signal

- ▶ Dihadron $\Delta \phi$ distribution for cuts on the ϕ separation between the leading hadron and scattered electron.
- More restrictive cuts on the leading hadron produces an away-side dihadron peak.
- ► The QCD Compton + Gluon Fusion process (filled histograms) are 500x smaller than the LO process.

Scattered Electron Energy

- ▶ Electron energy vs. η for all processes (colored histogram) and for QCD Compton + photon-gluon fusion (black histogram).
- ► The electron always loses energy for the QCD Compton + photon-gluon fusion process?

Summary

- ▶ There is a dihadron $\Delta \phi$ correlation signal within PYTHIA.
- ▶ But it is not dominantly from the LO α_S processes: QCD Compton + photon-gluon fusion.
- ► Need to understand further if this isn't just some momentum conserving splitting in PYTHIA?
- ► Fallback would be to run a small sample of DJANGOH, which does calculate LO α_S processes for both e+p and e+A