ECCE Jet R_{eA}

Raymond Ehlers¹

25 October 2021

¹Oak Ridge National Lab

Updates from last Friday

- Resolved scaling issues:
 - Weight is now taken as nPDF / proton PDF evaluated at same x, Q^2
 - Previously didn't account for impacts of proton PDF
 - Weighted eA spectra are now similar to ep
 - Sidesteps other issues about absolute value of PDF
 - See backup for quick comparison
- Removed 1/A factor in R_{eA} expression that was included last time
- Many small bug fixes: calculating kinematics, acceptance, etc

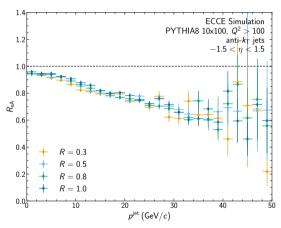
Note for analyzers

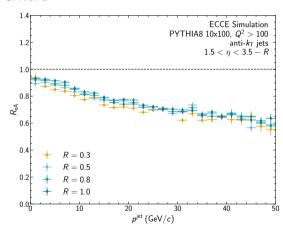
- Something for event evaluator users to watch out for: variables with the same name have different meaning in the PYTHIA6 vs PYTHIA8 output
- In PYTHIA8:
 - _hepmcp_Q2 is actually Q (actually, info::QRen()), not Q^2
 - _hepmcp_x1 is the quark x
- In PYTHIA6:
 - hepmcp_Q2 is truly Q²
 - hepmcp_x1 is the quark x
- If you calculate these things yourself, you'll be fine
 - Alternatively, handled properly in my branch of the afterburner

Reminder: analysis parameters

- Using Q² > 100 PYTHIA8 production from prop.4: HFandJets/pythia8/ep-10x100-q2-100/
 - 1 $< Q^2 <$ 100 is qualitatively the same up until statistics run out, so I'll stick with the high Q^2
 - May switch to PYTHIA6, but stayed with PYTHIA8 given the evaluators that were available
- Jet finding with anti- k_T R = 0.3, 0.5, 0.8, and 1.0
 - Constituents: $p_T < 30 \text{ GeV}/c$
 - Requiring at least two constituents, based on John's Centauro studies.
- Charged and calo jets for today

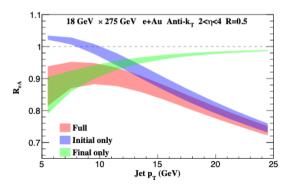
Reminder: measuring the R_{eA}

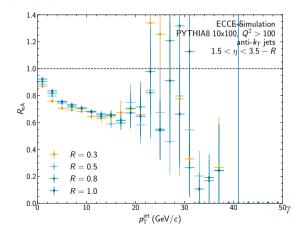

- Using $Q^2 > 100$ PYTHIA8 production from prop.4: HFandJets/pythia8/ep-10x100-q2-100/
 - Used subset of stats just for development
- R_{eA} defined as:


$$R_{\mathrm{eA}} = rac{\int_{\eta_{1}}^{\eta_{2}}\mathrm{d}\sigma/\mathrm{d}\eta\mathrm{d}p|_{\mathrm{eA}}}{\int_{\eta_{1}}^{\eta_{2}}\mathrm{d}\sigma/\mathrm{d}\eta\mathrm{d}p|_{\mathrm{ep}}}$$

- Calculating ReA using nPDF scaling as proposed by Nathan
 - Using EPPS16nlo_CT14nlo_Au197 so far
 - Could add other nPDFs, but variations on a single nPDF may be enough
 - Normalized by CT14nlo.

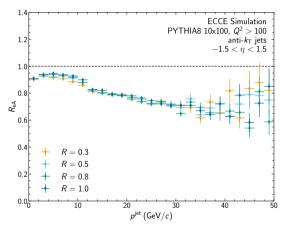
Charged jet R_{eA}

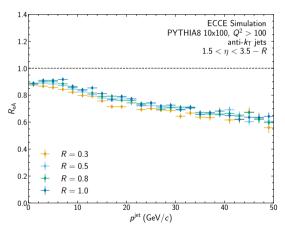



Charged jet R_{eA}

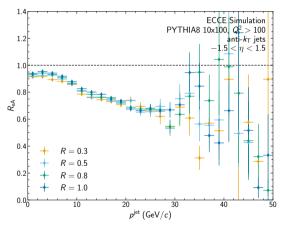
- Shape and scale are similar (now, for p_T)
- NOTE: We only have initial state effects

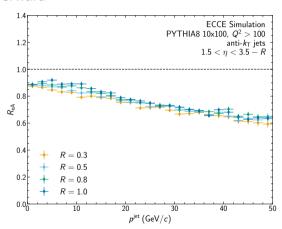
Yellow report



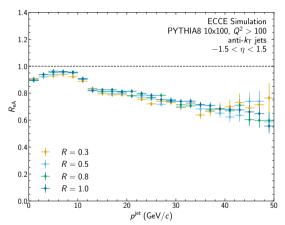

Raymond Ehlers (ORNL) - 25 October 2021

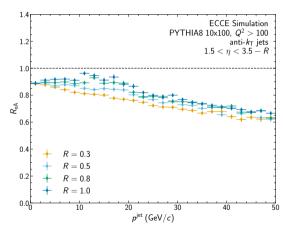
Charged jet R_{eA} - true



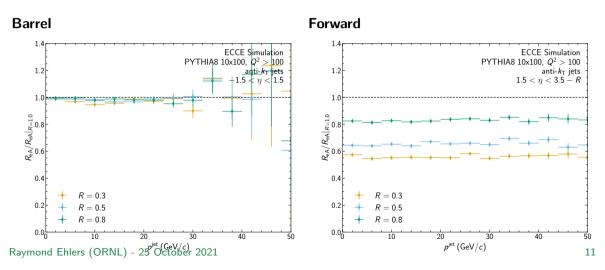


Calo jet R_{eA}

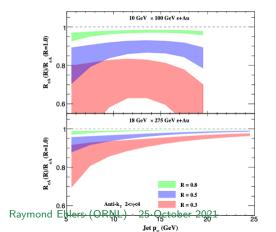


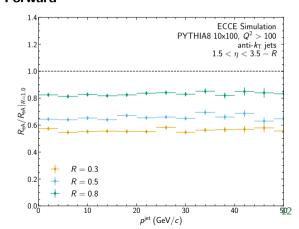


True jet R_{eA}



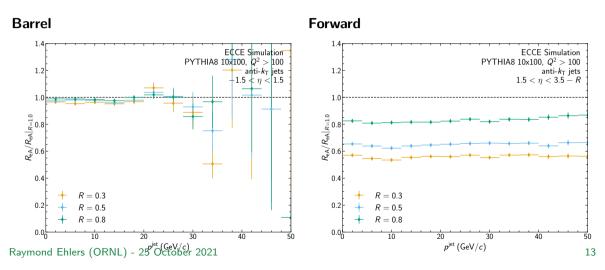
R_{eA} ratios: charged jets


Seems to be under much better control, with correct ordering forward



R_{eA} ratios: charged jets vs YR

- A bit low for large R compared to upper YR panel, but generally fine
- Mostly consistent within uncertainties, maybe due to nPDF variations


Yellow Report

R_{eA} ratios: calo jets

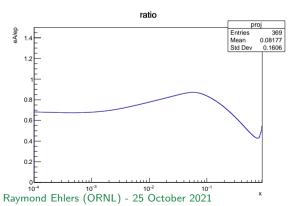
Same story for calo jets as charged jets

Uncertainty projections

- Project stat uncertainties given full luminosity
- Take central values from nPDF projections
- Errors are increased by L_{int} :
 - ep: 10 fb^{-1}
 - eA: 0.05 fb⁻¹
- Additional systematic uncertainties?
- Uncertainties from the nPDF can be propagated, but may not be so meaningful

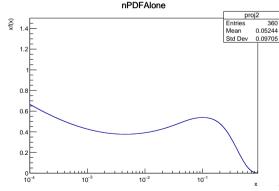
Next steps

- Bottom line: seems that we'll be able to measure R_{eA} effectively, without substantial detector effects
- Analysis note!
 - Continue over weekend
- Finish running rest of stats



nPDF scaling

For up quark, $Q^2 = 10$ (sorry for quick and dirty plots)


eA / ep

Values within reasonable range

eA alone

• (Probably?) needs 1/x, so will be large

