

Bi-Weekly Collaboration Meeting

Thursday 2021-09-16

The Software and Computing WG Conveners:
Andrea Bressan (University of Trieste and INFN),
Dmitry Romanov (Jefferson lab),
Sylvester Joosten (Argonne National Laboratory),
Whitney Armstrong (Argonne National Laboratory),
Wouter Deconinck (The University of Manitoba)

Reconstruction status

Immediate TODO

- revisit calorimetry digitization and reconstruction (with Calorimetry WG)
- FF RP & OMD reconstruction (RP almost done!)
- In meantime: integrate fast FF reconstruction (algorithms ready)
- ZDC reconstruction?
- X Proper neutral reconstruction.
- In meantime: Link clusters with neutrals similar to what we do for tracking.
- Fake/Fast PID based on actual PID detector hits instead of just MC truth.
- W Calculate kinematic variable in main reconstruction
- Prepare to grow data model as need arises
- Electron finder!
- Propagate material map into ACTS

Status

- Tracking working well in the central detector!
- X No FF reconstruction
- MC truth PID
- X No neutrals
- Reconstruction benchmarks working well

Reconstruction task list

Reconstruction (C++, Gaudi, ACTS, Python)

- Simple electron PID (medium/expert)
- Advanced electron PID (expert)
- Jet reconstruction (expert)
- Event subcomponent matching (medium/expert)
- RICH reconstruction (medium/expert)
- MRICH reconstruction (medium/expert)
- DIRC reconstruction (medium/expert)
- Holistic calorimeter reconstruction (expert)
- Track propagation and simple vertexing (medium/expert)
- Vertexing (medium/expert)
- Optimize tracking (medium/expert)
- Kinematic reconstruction (easy/medium)
- Far-forward reconstruction (easy/medium)
- Far-backward reconstruction (easy/medium)
- ML-accelerated algorithms (medium/expert)

Reconstruction Benchmarks (ROOT, Python, ...)

- Validate/optimize digitization algorithms (easy)
- Clustering performance (medium)
- Subsystem performance (easy/medium)
- Overall reconstruction performance (medium)
- Study reconstructed acceptance (easy)

Simulation status

All configurations

- V Updated calorimetry (55cm glass blocks; WScFi endcap)
- TODO: Add services for negative ECAL as they can impact HCAL
- Minor: fix positive beam pipe rendering
- Added beam pipe material into ACTS
- Add PID volumes into ACTS for improved tracking resolution
- Fix WScFi endcap implementation as it triples the simulation/reconstruction memory requirements
- Prepare for next big simulation run over the weekend (with everything that's ready)

✓ Full simulation run can take as little as 4 days!

- Much quicker than anticipated (plenty of resources available)
- 🔥 ... if all goes well

Acadia (N0-B0-P0)

my propagate latest changes from master and tag v1.0

BigBend (N1-B1-P1)

- replace tracker with hybrid setup
- replace MRICH with cylindrical setup
- wap GEM in front of MRICH, not behind
- update BECAL with 9 imaging layers (vs 6)
- Tentative tag BigBend early next week

CanyonLands (N2-B2-P2)

- Implement more optimized hybrid tracker, has to be well-connected with updated/more realistic endcap design
- Prepare to implement updated design including 25cm magnet shift
- X BECAL with higher density back portion?
- X Backward aerogel RICH with mirrors?

Simulation status

Simulation task list

Geometry/full simulation (XML, C++, DD4hep, GEANT)

- Detector color scheme (easy)
- Automatic marketing/publication figures (easy/medium)
- Optimize parametrization of subsystems (medium)
- Implement additional technology options (easy/medium/expert)
- Add extra support & service material (easy/medium)

Detector Benchmarks (ROOT, Python)

- Validate hit multiplicities in subsystems (easy)
- Energy calibrations for calorimeters (easy/medium)
- Validate optics in DRICH (medium/expert)
- Study raw acceptance (easy)
- Validate detector material budget (easy/medium)
- Render results on dashboard webpage (all benchmarks)

Physics Benchmarks

- Afterburner almost ready (see next talk)
- Can we introduce crossing angle (but HepMC samples need to store the beam particles!)

Physics Benchmarks (ROOT, Python)

- Integrate analyses from PWGs into CI framework (easy)
- Validation figures on kinematic variables (easy)
- Collect and integrate available event samples (easy)

Full Simulation Production Status

Since last meeting:

- All generators to be required to provide incoming beam particles, status code 4 (crossing angle, beam energy for afterburner)
- ✓ Now running directly on OSG as well

Current dev focus: debugging and resiliency

- Debugging:
 - Include RICH materials in ACTS
 - X Event weights and "A" records
- Resiliency: Automatic flagging/resubmit
 - Timeouts on stuck tracks (MRICH)
 - Automatic timing estimates in CI
 - Automatic overview plots for all files
- Efficiency: Multithreaded simulations
 - ₩ Memory use now ~ 2.5 GB / core

Data on S3 and XRootD (synced upon generation):

- https://dtn01.sdcc.bnl.gov:9000/minio/eictest/
 ATHENA/RECO
- mc mirror S3/eictest/ATHENA/RECO RECO
- TFile::Open("s3https://dtn01.sdcc.bnl
 .gov:9000/eictest/ATHENA/RECO")
- TFile::Open("root://sci-xrootd.jlab.o rg//osgpool/eic/ATHENA/RECO/...")
- Geometries: master, acadia-v1.0-alpha

Storage usage (currently cycling through ~60 TB):

Operational Benefits of OSG Jobs

Running at JLab (capacity 25k job slots, 14% for EIC)

Now 500 TB each on /work/eic{2,3}; larger EIC xrootd service

Running on OSG (capacity ~∞)

Still mirroring S3 to xrootd at JLab

Full simulation production run currently takes about 4 days.

Tutorials and office hours

Documentation portal: doc.athena-eic.org

Full simulation tutorials

<u>eic-ip6-software-l@lists.bnl.gov</u> #software-helpdesk on Slack

- Have organized dedicated tutorial/Q&A sessions aimed at various PWGs
- 2. #software-helpdesk office hours every week: Mo-We-Fr at 2:00pm EDT https://zoom.us/j/93744567735.
- 3. Looking to replace one helpdesk session with a morning timeslot to better overlap with Asian colleagues
- Will keep close contact with PWGs to support swift development of analyses

ATHENA

- https://eicweb.phy.anl.gov/groups/EIC/-/boards
- Working to polish/integrate task list to make it easier for people to find/check out a task

Reconstruction Status

✓ Calorimetry

- V Algorithms
 - Simple Clustering, Island Clustering (2D), 2+1D Clustering, Topological Clustering (3D)
 - V Hybrid cluster merging
- Clustering benchmarks

PID

- Algorithms
 - V Fuzzy-K ring clustering
 - MRICH, DIRC, DRICH reconstruction
 - **V** Truth PID
- X PID benchmarks

Far Forward & Far Backward

- X Integrate B0 with tracker, low Q2 tagger
- Matrix transform for Roman Pot & OMD
- Simple FastMC reconstruction for FF
- W Use registered hits for FastMC

774 Tracking

- Algorithms
 - Decent performance in barrel region
 - Improved tracking efficiency in endcaps
 - Tracking benchmarks
 - Incorporate B0 in ACTS
 - W Beampipe material in ACTS
 - Setup realistic vertex reconstruction
- Tracking Benchmarks
 - Basic benchmarks working
 - X Tracking with realistic background

W Global

- Event builder (produces ReconstructedParticle)
 - V Dummy event builder to test reco chain
 - ✓ Simple tracking + truth PID event builder
 - Fast parametrized reconstruction for missing algorithms (e.g. dRICH) based on registered hits.
- Stable data model
- Cleanup/consolidate reconstruction flow