New tau neutrino oscillation and scattering constraints on unitarity violation

Brookhaven[®] National Laboratory

Julia Gehrlein

BNL HET lunch seminar, October 2021

Julia Gehrlein

BNL HET seminar: New constaints on tau unitarity

Testing the neutrino portal

Phenomenology at direct search experiments

- (depends on U_{f4} and sterile mass scale):
- Need to be kinematically producable detected via decay productions in detector

Testing the neutrino portal

•
$$N_R$$
 light ($m_{N_R} \sim \mathcal{O}(1 \text{ eV})$) -

Julia Gehrlein

Oscillation phenomenology of N_R depends on its mass scale: \rightarrow direct sensitivity at oscillation experiments

BNL HET seminar: Tau unitarity

Julia Gehrlein

Testing the neutrino portal

Oscillation phenomenology of N_R depends on its mass scale:

 N_R light ($m_{N_R} \sim O(1 \text{ eV})$) \rightarrow direct sensitivity at oscillation experiments

 N_R heavier ($m_{N_R} \in [10 \text{ eV}, 15 \text{ MeV}]) \rightarrow \text{sensitivity at oscillation}$

experiments in averaged out regime

 $\Delta m_{41}^2 L/(4E)) \gg 1$

Constraints are insensitive to mass scale

Gallium, reactor flux anomalies

$$\Delta m_{41}^2 = 1 \text{ eV}^2$$

 $\Delta m_{41}^2 = 10 \text{eV}^2$

Depends on E, L/E of experiment!

BNL HET seminar: Tau unitarity

Testing the neutrino portal

- N_R light ($m_{N_R} \sim \mathcal{O}(1 \text{ eV})$) \rightarrow direct sensitivity at oscillation experiments N_R heavier ($m_{N_R} \in [10 \text{ eV}, 15 \text{ MeV}]) \rightarrow \text{sensitivity at oscillation}$ experiments in averaged out regime
- N_R heavy ($m_{N_R} \gtrsim 40$ MeV)) \rightarrow too heavy to be produced in oscillation experiments

Impact on unitarity of PMNS matrix: Measureable, active-light 3x3 mixing matrix is not unitary but full mixing matrix including sterile states is unitary

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \cdots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \cdots \\ \cdots & \cdots & \cdots & \ddots \end{pmatrix}$$

Now entering

Neutrino-land

Oscillation phenomenology of N_R depends on its mass scale:

Depends on E of experiment!

Constraints are insensitive to mass scale

 u_2 ν_3 u_4 :

BNL HET seminar: Tau unitarity

7

Non-unitarity

Effects of non-unitarity of mixing matrix: Production and detection of neutrinos are weak processes

$$\mathscr{L} \supset -\frac{g}{2\sqrt{2}} (W^+_\mu \overline{l}_\alpha \gamma_\mu (1-\gamma_5) U_{\alpha i} \nu_i + h. q)$$

different from unitary matrix

Julia Gehrlein

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon '06

=1 if U is unitary

Oscillation probability

All terms affected by non-unitarity

Effects of non-unitarity of mixing matrix:

Production and detection of neutrinos are weak processes

$$\mathscr{L} \supset -\frac{g}{2\sqrt{2}} (W_{\mu}^{+} \overline{l}_{\alpha} \gamma_{\mu} (1 - \gamma_{5}) U_{\alpha i} \nu_{i} + h. d)$$

different from unitary matrix

Oscillation probability

Initial neutrino flux

$$P_{\alpha\beta}(E,L) = \frac{\left|\sum_{i=1}^{acc} U_{\alpha i}^{*} \mathbf{e}^{\mathbf{i}_{P_{i}}L} U_{\beta i}\right|^{2}}{(UU^{\dagger})_{\alpha\alpha}(UU^{\dagger})_{\beta\beta}} \qquad \frac{d\phi_{\alpha}^{CC,SM}}{dE} = \frac{d\phi_{\alpha}^{CC,SM}}{dE}(UU^{\dagger})_{\alpha\alpha}$$

$$\longrightarrow n_{\beta}^{CC} \sim \int dE \frac{d\phi_{\alpha}^{CC,SM}(E)}{dE} \tilde{P}_{\alpha\beta}(E,L) \sigma_{\beta}^{CC,SM}(E) \epsilon(E) \quad \text{With} \quad \tilde{P}_{\alpha\beta} = |\sum_{i=1}^{acc} U_{\alpha i}^* e^{iP_i L} U_{\beta i}|^2$$

Cancellations happen if cross section and flux come from theory predictions Only partial cancellations if flux comes from near detector and/or cross section comes from experiment

Julia Gehrlein

Non-unitarity

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon '06

=1 if U is unitary

CC neutrino cross section

$$\sigma_{\alpha}^{CC} = \sigma_{\alpha}^{CC,SM} (UU^{\dagger})_{\alpha\alpha}$$

BNL HET seminar: New constaints on tau unitarity

Effects of non-unitarity of mixing matrix: Production and detection of neutrinos are weak processes

$$\mathscr{L} \supset -\frac{g}{2\sqrt{2}} (W^+_\mu \overline{l}_\alpha \gamma_\mu (1-\gamma_5) U_{\alpha i} \nu_i + h \cdot c.) - \frac{g}{2\cos\theta_W} (Z_\mu \overline{\nu}_i \gamma^\mu (1-\gamma_5) (U^\dagger U)_{ij} \nu_j + h \cdot c.)$$

different from unitary matrix

Oscillation probability

Initial neutrino flux

 $\alpha = e$

i=1

Julia Gehrlein

Non-unitarity

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon '06

=1 if U is unitary

NC neutrino cross section

$$\sigma_{\beta}^{NC} = \sigma^{NC,SM} | (UU^{\dagger})_{\beta\beta} |^{2}$$
$$\sigma_{i}^{NC} = \sigma^{NC,SM} \sum_{j=1}^{acc} | (U^{\dagger}U)_{ij} |^{2}$$

$$L)\sum_{j=1}^{acc} |(U^{\dagger}U)_{ij}|^2 \epsilon(E)$$

Only partical cancellations happen

Even if not all flavours involved in process there is a dependence on all matrix elements

10

Non-unitarity

Results in literature for kinematically accessible sterile

Julia Gehrlein

BNL HET seminar: New constaints on tau unitarity

From <u>Hu, Ling, Tang, Wang '20</u>

See also Parke, Ross-Lonergan '15

Electron row precisely determined: Driven by reactor experiments \rightarrow lots of statistics Improvements in future by JUNO

Qian, Zhang, Diwan, Vogel '13

Muon row less precise: Ongoing and future LBL experiments will lead to more muon neutrino data

Non-unitarity

Results in literature for kinematically accessible sterile

Julia Gehrlein

See also Parke, Ross-Lonergan '15

From Hu, Ling, Tang, Wang '20

Tau row worst determined: new physics could be hiding there

Necessary to understand tau row better

Unitarity of tau row

Why is the tau row so bad?

Identify neutrino flavour by identifying associated charged lepton: taus are difficult, and heavy

Need high energy neutrino beam Need good understanding of tau identification, tau systematics, ...

Julia Gehrlein

Unitarity of tau row

Data sets considered in literature: muon neutrino disappearance experiments (IceCube, DeepCore, SuperKamiokaNDE)

- LBL tau appearance experiments (OPERA) (8 events)

Denton, JG '21

14

Data sets considered in literature: muon neutrino disappearance experiments (IceCube, DeepCore, SuperKamiokaNDE)

- LBL tau appearance experiments (OPERA) (8 events)

More tau neutrino data se

Rich data previously not c

Denton, JG '21

	Experiment	Source	\sim Events detected
ets available!	DONuT	Production	7.5
	OPERA	Long-baseline	8
	\mathbf{SK}	Atmospheric	291
considered!	IceCube	Atmospheric	1804
	IceCube	Astrophysical	2
		•	•

Data sets considered in literature: muon neutrino disappearance experiments (IceCube, DeepCore, SuperKamiokaNDE)

- LBL tau appearance experiments (OPERA) (8 events)

More tau neutrino data s

Rich data previously not a

Peter B. Denton and Julia Gehrlein, "New tau neutrino oscillation and scattering constraints on unitarity violation" arXiv:2109.14575 [hep-ph]

Pioneer the use of these data sets to derive novel constraints on tau row matrix elements and tau row normalization

Julia Gehrlein

BNL HET seminar: New constaints on tau unitarity

Denton, JG '21

ets available!	Experiment	Source	\sim Events detected
	DONuT	Production	7.5
	OPERA	Long-baseline	8
	\mathbf{SK}	Atmospheric	291
considered!	IceCube	Atmospheric	1804
	IceCube	Astrophysical	2

Overlooked data sets:

- Long baseline v_T appearance data (OPERA \rightarrow DUNE)
- **new:** v_T CC scattering data from DOnuT \rightarrow FASERnu
- **new:** Atmospheric v_T appearance (IceCube, SuperK \rightarrow IceCube, HyperK, KM3NeT)
- **new:** Astrophysical v_T appearance (IceCube \rightarrow IceCube-Gen2)
- new: NC data from SNO
- new: NC data from CEvNS

 more CEvNS data

Denton, JG '21

• Atmospheric v_{μ} disappearance (DeepCore, SuperK, IceCube \rightarrow IceCube, HyperK, KM3NeT)

Focus on effect of these data sets on tau row Use priors on electron and muon row from literature

Overlooked data sets:

- Long baseline v_T appearance data (OPERA \rightarrow DUNE)
- **new:** v_T CC scattering data from DOnuT \rightarrow FASERnu
- **new:** Atmospheric v_T appearance (IceCube, SuperK \rightarrow IceCube, HyperK, KM3NeT)
- **new:** Astrophysical v_T appearance (IceCube \rightarrow IceCube-Gen2)
- new: NC data from SNO
- new: NC data from CEvNS

 more CEvNS data

- Considered scenarios
- 1 additional accessible sterile neutrino \rightarrow 4x4 matrix
- 2 additional, kinematically inaccesible sterile neutrinos \rightarrow enough dofs to parametrize 3x3 submatrix

Julia Gehrlein

BNL HET seminar: New constaints on tau unitarity

Denton, JG '21

• Atmospheric v_{μ} disappearance (DeepCore, SuperK, IceCube \rightarrow IceCube, HyperK, KM3NeT)

Focus on effect of these data sets on tau row Use priors on electron and muon row from literature

Atmospheric ν_{μ} disappearance

Cosmic rays hit the atmosphere \rightarrow produce mesons \rightarrow decay into muons \rightarrow muon neutrinos are produced Muon neutrinos travel through Earth and experience matter effects

Julia Gehrlein

Denton, JG '21

BNL HET seminar: New constaints on tau unitarity

Long baseline searches

Julia Gehrlein

Denton, JG '21

Consider $P(\nu_{\mu} \rightarrow \nu_{\tau})$ in the beam at OPERA and DUNE

BNL HET seminar: New constaints on tau unitarity

 $P(\nu)$

Sensitivity comes primarily from a combination of the matter effect, the lower tau neutrino reconstructed energy, and the rising cross section due to the tau lepton's threshold

Constraint parametrized as $N_{\tau} = \frac{\phi_{\nu_{\tau}}^{meas}}{\phi_{\nu_{\tau}}^{theo}} = \frac{\tilde{P}_{\mu\tau}^{UV}}{\tilde{P}_{\mu\tau}^{3U}}$

Julia Gehrlein

Denton, JG '21

Atmospheric ν_{τ} appearance

$$\mu \rightarrow \nu_{\tau}$$

Denton '21

BNL HET seminar: New constaints on tau unitarity

Astrophysical ν_{τ} appearance

- \bullet
- \bullet

IceCube has seen 2 astrophysical tau neutrinos IceCube has also constrained astrophysical muon neutrino flux \implies use ratio of fluxes (should be 1 for unitary matrix)

$$n_{\nu_{\alpha}}^{theo} = \sigma_{\alpha}^{CC,SM} (UU^{\dagger})_{\alpha\alpha} \times \phi_{p} (\xi (UU^{\dagger})_{ee} P_{e\alpha} + (1-\xi)(UU^{\dagger})_{\mu})_{\mu} \\ \left(\frac{\phi_{\nu_{\tau}}}{\phi_{track}}\right)^{meas} = \frac{\xi \sum_{i=1}^{acc} |U_{ei}|^{2} |U_{\tau i}|^{2} + (1-\xi) \sum_{i=1}^{acc} |U_{\mu i}|^{2} |U_{\tau i}|^{2}}{(1-\xi) \sum_{i=1}^{acc} |U_{\mu i}|^{4} + \xi \sum_{i=1}^{acc} |U_{ei}|^{2} |U_{\mu i}|^{2}}$$

Julia Gehrlein

Denton, JG '21

Don't expect astrophysical sources to produce $\nu_{\tau} \rightarrow$ any detected ν_{τ} indicate flavour change Neutrinos have travelled very long distances \rightarrow decoherent oscillations Source of astrophysical neutrinos not clear \rightarrow No theoretical prediction for number of expected events

Rert

$$\mu P_{\mu \alpha}$$
)

CC scattering

$$\tilde{P}(\nu_{\tau} \to \nu_{\tau}) = \begin{vmatrix} acc \\ \sum_{i=1}^{acc} U_{\tau i}^* U_{\tau i} \end{vmatrix}$$

Constrains (5,3) scenario

Denton, JG '21

First observation of tau neutrinos by DONuT (in 2000)! **DONuT/FASERnu:**

High energy tau neutrino source (decay of Ds meson) • Short baseline, high energy \rightarrow no oscillations have developped Compare predicted to observed events

Constrains (4,4) scenario

CC scattering

$$\tilde{P}(\nu_{\tau} \to \nu_{\tau}) = \left| \sum_{i=1}^{acc} U_{\tau i}^* U_{\tau i} \right|^2 - 2\Re \left(\sum_{j=heavy}^{acc} U_{\tau j}^* U_{\tau j} \sum_{i=1}^3 U_{\tau i} U_{\tau i}^* \right),$$

$$\tilde{P}(\nu_{\mu} \rightarrow \nu_{\tau}) = \left| \sum_{i=1}^{acc} U_{\mu i}^{*} U_{\tau i} \right|^{2} - 2\Re \left(\sum_{j=heavy}^{acc} U_{\mu j}^{*} U_{\tau j} \sum_{i=1}^{3} U_{\mu i} U_{\tau i}^{*} \right)$$
(4,4): $U_{\mu 4}$ compatible with zero \rightarrow no constraint on $U_{\tau 4}$

Julia Gehrlein

Denton, JG '21

First observation of tau neutrinos by DONuT (in 2000)! **DONuT/FASERnu:**

High energy tau neutrino source (decay of Ds meson) • Short baseline, high energy \rightarrow no oscillations have developed Compare predicted to observed events

NOMAD:

• Short baseline, high energy \rightarrow no oscillations have developed Upper limit on $\tilde{P}(\nu_{\mu} \rightarrow \nu_{\tau})$, $\tilde{P}(\nu_{e} \rightarrow \nu_{\tau})$

Julia Gehrlein

Denton, JG '21

NC scattering

SNO

NC measurement fundamental to establish neutrino oscillations Compare NC theoretical prediction to NC measurement

Uncertainty of prediction > experimental uncertainty \rightarrow only weak constaints from SNO

ullet

Julia Gehrlein

Denton, JG '21

NC scattering

CEvNS

NC process

Electron and muon neutrinos from stopped pion source \rightarrow no tau neutrino involved! \implies sensitivity to tau matrix elements from NC process

Don't need to identify tau neutrino to constrain tau matrix elements!

BNL HET seminar: New constaints on tau unitarity

Denton, JG '21

Results for kinematically accessible sterile

27

Julia Gehrlein

Denton, JG '21

Results for kinematically accessible sterile

Results for inaccessible steriles

Denton, JG '21

Results for inaccessible steriles

Denton, JG '21

Constraints on tau row normalization

Julia Gehrlein

Denton, JG '21

31

Comparison to direct searches

Julia Gehrlein

Denton, JG '21

- Cover an unexplored parameter \bullet space for small sterile masses
- Probe region predicted by seesaw ulletmechanism
- Complementary and new \bullet constraints for large masses
- Most direct searches (apart from lacksquareT2K) rely on one dominant sterile mixing paramter \leftrightarrow oscillation constraints allow all sterile mixing to be non-zero

Summary & Conclusions

- introduced new, previously overlooked tau neutrino data sets
- derived constraints on tau row matrix elements and tau row normalization with current data as well as forecasted prospects
- No hints of unitarity violation
- Tau matrix elements non-zero at high confidence level
- complementary constraints to direct searches
- tau row in better shape than previously assumed in the literature \Rightarrow in the future the tau row can be measured potentially as well as the muon row!

Denton, JG '21

Tau neutrino physics

- New unitarity constraints is just one application of tau neutrino data
- Future of tau neutrinos is bright: Many new experiments sensitive to tau neutrinos are
 - coming up at different energy scales
 - Improvements in understanding of tau neutrino phyiscs
 - \rightarrow better constraints on tau sector
 - Brought community together in Tau neutrino workshop and whitepaper

Julia Gehrlein

Ihanke I I AI IND:

