Low p PID using TOF in ATHENA software

ATHENA PID meeting (09/27/2021)

Wenqing Fan, LBNL

EICUG YR

					Threshold (GeV/c)				
Physics requirements:				radiator	index	e	π	K	p
Rapidity	$\pi/K/p$ and $\pi0/\gamma$	e/h	Min pT (E)	quartz (DIRC)	1.473	0.00048	0.13	0.47	0.88
-3.51.0	7 GeV/c	18 GeV/c	100 MeV/c	aerogel (mRICH)	1.03	0.00207	0.57	2.00	3.80
				aerogel (dRICH)	1.02	0.00245	0.69	2.46	4.67
-1.0 – 1.0	8-10 GeV/c	8 GeV/c	100 MeV/c	$C_2 F_6$ (dRICH)	1.0008	0.01277	3.49	12.34	23.45
1.0 - 3.5	50 GeV/c	20 GeV/c	100 MeV/c	CF_4 (gRICH)	1.00056	0.01527	4.17	14.75	28.03

Table 11.23: Table of Cherenkov thresholds for various media.

Magnetic field can affect the low p_T range

Impact on forward Λ_c reconstruction

No ID

DM

Cutoff All ID

No ID

DM

Cutoff All ID

No ID

DM

Cutoff All ID

https://indico.bnl.gov/event/11762/contributions/49533/attachments/34597/56145/ EIC_ECCE_wenging_051821.pdf Pythia, e+p @ 10+100 GeV, Min Bias -3.0 < η < -1.0 **1.0 <** η **< 3.0** -1.0 < η < 1.0 35 0.2 ۸ 30F ŗ 25 F ۸ 2.0 Low p cutoff using 20F GeV/c **DIRC+dRICH** as **PID** 15 -10F affect Λ_c significantly 5È 2.0 < 35 E *** 30 E Stat. Err. [%] Larger effect at $|\eta| > 1$ q_ 25Ē ۸ 4.0 20Ē GeV/c 15E larger effect at low p_T 10È 5È 4.0 < 35 **3T has slightly better** 1.4 T 30 ď **3** T precision comparing ۸ 25 not enough 10.0 GeV/c 20 to 1.4T statistics 15F 10 5

Information from DD4HEP

- Test in Athena software framework
 - Simplistic setup containing only the tracking detectors without support cones or shells
 - Using the outter-most barrel layer and forward GEM as reference surface for path length calculation

- Single muon events with fixed momentum and eta (1000 events)
 - Currently focusing on low mometum: 0.1, 0.2, ..., 1.0, 2.0 GeV
 - 🔹 η: 0, 0.5, 1, 1.5, 2, 2.5, 3
 - Output: reconstructed momentum, path length, # of intersection points with All-Si layers

Toy MC to extract the $\pi/K/p$ separation power

- Extrapolate pathlength and uncertainty as function of p and η
 - Barrel @ 43cm, forward @ 185cm

Toy MC to extract the $\pi/K/p$ separation power

- Extrapolate pathlength and uncertainty as function of p and η
 - Barrel @ 43cm, forward @ 185cm
- Throw particles (π , K, proton) of different p and η
 - Calculate time of flight t_{flight} = L/velocity
 - Truth: t₀ = 0, t_f = t₀ + t_{flight} = L/velocity
 - * $\beta = L^{reco} / [(t_f^{reco} t_0^{reco}) \cdot c]$ where L^{reco} smear by full sim result
 - t_f^{reco}: smear t_f by 20, 30, 50 ps
 - t₀^{reco}: smear t₀ by 20, 30, 50 ps
 - L^{reco}: smear L by the uncertainties extracted from full simulation
- Extract the high p limit of 3σ separation

Barrel TOF

- DIRC firing threshold: 0.47 (K), 0.88 (p)
- Reference radius: 43cm

- One TOF layer at ~43cm can compensate the DIRC momentum coverage
- Check also for foward TOF
- Have TOF in the full simulation setup at planned position
- Work with software group to write the path length out
- Caveat:
 - Currently tracking using truth seeding, the low p threshold, resolution for tracking itsself might be an optimistic case now