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Before we jump to SCET GR let us discuss EFTs 
• Every QFT is EFT


• Typically, when we think of EFT, we mean some simplified version of the 
full theory


• Basic idea: remove (integrate out) complicated short distance physics and 
focus only on scales relevant for a given problem (long-distance 
contributions)


• Landscape of EFTs is too large to describe in one talk - we will only focus 
on few simple EFTs with perturbative matching 

This is talk about formalism, but I hope to shed a light on 
the physics behind this formalism 
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I will (re)introduce following concepts

Power-counting 

Basic EFTs Modern EFTs

Mass dimension Arbitrary parameter

Heavy/energetic 
states Not dynamical DOF Can be dynamical DOF

Locality Theory is local with higher 
derivative terms Theory can be non-local

Multipole expansion Not needed - they already have 
homogenous power counting

Essential to achieve 
homogenous power counting

Gauge symmetry Same as in the full theory Each mode has its own
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A tale of two scalars
ℒ = ∂μϕ†∂μϕ − m2ϕ†ϕ +

1
2 (∂μh∂μh − M2h2) − ghϕ†ϕ

λ = −
2g2

M2

ℒeff = ∂μϕ†∂μϕ − m2ϕ†ϕ −
λ
4

(ϕ†ϕ)2

This is the first term in the expansion of 

On-shell matching gives

Consider heavy and light scalar fields interacting with each other 

If we are interested only in physics at scales below M, then we can use EFT

ℒeff = ∂μϕ†∂μϕ − m2ϕ†ϕ +
g2

2
ϕ†ϕ

1
□ + M2

ϕ†ϕ

(−ig)2( i
s − M2

+
i

t − M2 ) → i
2g2

M2

−iλ
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Basic EFTs
Previous example was what most people associate with EFT:


There are some heavy particles which are too heavy to be produced on-shell so we integrate them 
out and obtain series of local interactions


Typical examples:


• Fermi’s interaction


• SMEFT 


• Weak EFT


• …

F4

Power-counting = mass dimension
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But heavy particles decay …
We want to describe for example heavy quark which decays into something light 

Examples 
HQET NRQED/QCDM ≫ ΛQCD M ≫ vM

We need to introduce modes 

Hard   
Soft 

k ∼ M
k ∼ Λ

Hard   
Potential 

k ∼ M
k0 ∼ v2M, ⃗k ∼ vM

This time we integrate-out only the hard modes of the heavy field while we keep 
the soft/potential mode in the theory 

(Expansion in )ΛQCD/M (Expansion in  - velocity)v
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HQET

ℒ = Q (iγμDμ − M) Q

Consider a quark Lagrangian with mass  M ≫ ΛQCD

Mode decomposition is equivalent to isolating large momentum  , with p = Mv + k v2 = 1

On the operatorial level, this amounts to redefinition , with   and Q(x) = e−iMvx (Qv(x) + Bv(x)) 1 + v/
2

Qv = Qv
1 − v/

2
Bv = Bv

ℒ = Q (iγμDμ − M) Q = (Qv + Bv) (iγμDμ − (1 − v/)M) (Qv + Bv)

ℒ = QvivDQv − Bv (ivD + 2M) Bv + QviDT/ Bv + BviDT/ Qv

Using projection properties and introducing  Dμ
T = Dμ − vμ v ⋅ D

This is still the QCD 
Lagrangian just written in 

a funny way

Projectors allow to isolate 
heavy and light modes

Light Heavy
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HQET

ℒ = Qv (iv ⋅ D + iDT/
1

iv ⋅ D + 2M
iDT/ ) Qv = Qv (iv ⋅ D +

1
2M

iDT/ iDT/ + …) Qv

Bv =
DT/ Qv

iv ⋅ D + 2M

ℒ = QvivDQv − Bv (ivD + 2M) Bv + QviDT/ Bv + BviDT/ Qv

Use EOM (or field redefinition)

Soft iv ⋅ D ∼ Λ ≪ M

NRQED works the same, but counting is different  and   iv ⋅ D ∼ v2M DT ∼ vM

Power-correction 
(mass suppressed)

First time we encounter theory where counting is not related to the mass 
dimension

ℒ(0)
NRQCD = ℒ = Qv (iD0 +

1
2M

i ⃗D/ i ⃗D/ ) Qv

We integrate out the heavy DOF

This is still the QCD Lagrangian 
just written in a funny way

This is still the expanded  
QCD Lagrangian = HQET
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When NRQED is not enough …
We need more modes and we need them to interact with each other 

Only on-shell modes 
can be present in 

the EFT

Photon Fermion

Hard, k ∼ M

Soft, k ∼ vM

Potential, 
k0 ∼ v2M, ⃗k ∼ vM

Ultra-soft, k ∼ v2M

We keep fermion modes 
with  but integrate 

out the same photons 
modes

⃗k ∼ vM

k2 = 0 k0 −
⃗k 2

2M
= 0

QED

NRQED

PNRQED

NRQED does not have homogenous power-counting for threshold problems
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Non-localities in modern EFT

ℒeff = ∂μϕ†∂μϕ − m2ϕ†ϕ +
g2

2
ϕ†ϕ

1
□ + M2

ϕ†ϕ

Our first example

When all momenta , we can expand the denominator and obtain local EFT≪ M

But if we allow momenta to be of the order of , the theory becomes non-local M

The same happens in pNRQED/QCD and SCET when we integrate modes 
which have components of momenta of the same order as modes which we 
need in the low energy EFT
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PNRQED

Example: integrating out potential gluon

ℒ(0)
NRQCD = ℒ = Q†

v (iD0 +
1

2M
i ⃗D/ i ⃗D/ ) Qv Aμ = Aμ

s + Aμ
us + Aμ

p

(ie)2 −i
q2

= i
e2

⃗q 2

ℒPNQED = χ†(x)(iDus
0 +

⃗D2
us

2M ) χ(x) + ∫ d3rχ†χ(t, ⃗x ) V(r) χ†χ(t, ⃗x + ⃗r )

Qv = χ

∫ d4x ⟨p′ , k′ ∫ d3rχ†χ(t, ⃗x ) V(r) χ†χ(t, ⃗x + ⃗r ) p, k⟩
= (2π)4δ(4)(p + k − p′ − k′ )∫ d3re−i ⃗q ⃗rV(r)

V(r) =
e2

r

1) Start from NRQED

2) Insert field 
decomposition

3) Integrate-out soft  and potential photons and soft fermions

NRQED side PNRQED side

Result

Coulomb potential is a matching 
coefficient of NRQED to PNRQED
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Power-counting
Potential momentum 

k0 ∼ v2M → x0 ∼ 1/v2

⃗k ∼ vM → ⃗x ∼ 1/v
⟨0 χ(0)χ†(x) 0⟩ = ∫

d4p
(2π)4

i

p0 −
⃗p 2

2M

eipx

ℒPNQED = χ†(x)(iDus
0 +

⃗D2
us

2M ) χ(x) + ∫ d3rχ†χ(t, ⃗x ) V(r) χ†χ(t, ⃗x + ⃗r )

v5 1/v2 χ ∼ v3/2

∫ d4xχ†(x)(iDus
0 +

⃗D2
us

2M ) χ(x) ∼ v0

d4x ∼ v−5

∫ d4x∫ d3rχ†χ(t, ⃗x ) V(r) χ†χ(t, ⃗x + ⃗r ) ∼ v−5 × v−3 × v6 × V(r) ∼ v−2V(r)

For V(r) ∼ e2/r ∼ e2v

In bound state/threshold we have  — the Coulomb potential is LO effect e2 ∼ v

Use propagator to determine field counting  
(since the mass dimension does not count anymore)

Now, we can count the potential

13



Multipole expansion
Leading ultra-soft — potential interaction is χ†eA0 χ

The Feynman rule is e(2π)4δ(4)(p − p′ − k)

But  and  have potential 
scaling, hence 

p p′ 

⃗p , ⃗p ≫ ⃗k
We need to multipole expand the ultra-soft fields to achieve homogenous counting   

χ†(x)eA0(x)χ(x) = χ†(x)eA0(t, ⃗0)χ(x) + χ†(x)e ⃗x ⋅ ⃗∇ A0(t, ⃗0)χ(x) + …

Ultra-soft field fluctuate at distances  and cannot resolve short distance fluctuations in the spatial direction ∼ 1/v2 ∼ 1/v

ℒPNQED = χ†(x)(iDus
0 +

⃗∂ 2

2M
− e ⃗x ⋅ ⃗E (t,0)) χ(x) + ∫ d3rχ†χ(t, ⃗x ) V(r) χ†χ(t, ⃗x + ⃗r )

Taking into account terms from the spatial derivative (and non-abelian potential for QCD) we can derive the Lagrangian 
in manifestly gauge invariant form 

Multipole expansion and gauge symmetry are tightly connected: more on this in SCET example

leading term ∼ v5 sub-leading term ∼ v6
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(scalar) SCET
We want to describe massless energetic particles

n+n− = 2 , n2
± = 0

pμ = n+p
nμ

−

2
+ n−p

nμ
+

2
+ pμ

⊥

(n+p, p⊥, n−p) ∼ (1,λ, λ2)Q

n+∂ϕc ∼ ϕc , ∂⊥ϕc ∼ λϕc , n−∂ϕc ∼ λ2ϕc

∂μϕs ∼ λ2ϕs

Q2 Hard

λ2Q2 Collinear

λ4Q2 Soft

First: light cone parametrization 

Collinear counting

(n+p, p⊥, n−p) ∼ (λ2, λ2, λ2)Q

Soft counting
Analog of the ultra-soft mode in PNQED

Analog of the potential mode in PNQED
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SCET power-counting

⟨0 Tϕ(x)ϕ(y) 0⟩ = ∫
d4p

(2π)4

i
p2 + iε

e−ip(x−y)

d4p =
1
2

dn+pdn−pd2p⊥ ∼ λ0 × λ2 × λ2 = λ4

For collinear momentum 

For soft momentum 

d4p ∼ λ8

p2 = n+pn−p + p2
⊥ ∼ λ2

p2 ∼ λ4

Use the trick from PNRQED - field counting from propagator

Which implies ϕc ∼ λ True also for fermions — independent of mass dimension

Which implies ϕs ∼ λ2 Soft fermion scale as λ3
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Gauge symmetry

Aμ(x) = Acμ(x) + Asμ(x)ϕ = ϕc + WZ†ϕs

WZ† = P exp [ig∫
0

−∞
dsn+A(x + sn+)] P exp [−ig∫

0

−∞
dsn+As(x + sn+)]

Start from field decomposition, just like in PNRQED 

In SCET we need to be more careful with gauge symmetry

Collinear fields transform under collinear 
and soft gauge transformation

Soft fields can be treated as a background 
field and they do not transform under the 

collinear gauge transformation
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Multipole expansion
(n+p, p⊥, n−p) ∼ (1,λ, λ2)Q

(n+x, x⊥, n−x) ∼ (1/λ2,1/λ,1)1/Q

(n+p, p⊥, n−p) ∼ (λ2, λ2, λ2)Q
Collinear Soft

(n+x, x⊥, n−x) ∼ (1/λ2,1/λ2,1/λ2)1/Q

Soft field cannot resolve short-wavelength fluctuations along  and n−x x⊥

x− = n+ ⋅ x
n−

2
ϕs(x) = ϕs(x−) + x⊥∂ϕs(x−) +

1
2

n−xn+∂ϕs(x−) +
1
2

x⊥αxβ
⊥∂α∂βϕs(x−) + 𝒪(λ3ϕs) ,

In NRQED, ultra-soft photons could not resolve potential flections along the spatial direction

Introduce then

QED: ultra-soft photon couples only to the total charge 
of a bound state 

For neutral atoms - dipole interaction is the leading one 

QCD: soft gluon couples only to the total color charge of 
a jet 

For colorless jets - dipole interaction is the leading one 

Relevant for 
factorization 

theorems
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Multipole expansion and gauge symmetry 

D̂sμ = ∂μ − ig
n+μ

2
n−As(x−)

Only  component is a soft-covariant derivative, rest are ordinary derivatives n−

The Lagrangian in a Gauge-Invariant form 
xμFμν ↔ ⃗x ⋅ ⃗E

The derivation is actually not trivial - it involves a lot field redefinitions with special Wilson lines to ensure gauge covariance, 
but it can be performed to all orders and powers  — if you are interested in the details ask me afterwards

We need to enforce that gauge symmetry is consistent with multipole expansion 
Derivation involves parallel 
transport in gauge space 

from  to x x−

For PNRQED only  involved coupling to 
ultra-soft photons 

Dt
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How do the Feynman rules look like? 

x-dependent terms in the Lagrangian violate translational invariance

Dependence on x is always polynomial so we get derivatives of momentum conservation deltas 

which is what you expect if remember the reason behind multipole expansion

Example: single soft 
gluon emission in spin 

1/2 QCD

In PNRQED we said, δ(4)(p − p′ − k) = δ(4)(p − p′ − k0) + …

In practice, PNRQED computations are often 
performed in position space (it is almost QM), 
but in SCET we typically work in momentum 

space  
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Non-locality
In addition to the Lagrangian which describes interactions within a single collinear sector with the soft background we need also the 

so-called sources, currents or N-jet operators

𝒥 = ∫ [dt]N C(ti1, ti2, …)Js(0)
N

∏
i=1

Ji(ti1, ti2, …) ,

In SCET, we integrate out the hard scale but large momentum 
components are of the order of the hard scale hence sources 

become non-local along the collinear directions 

Ji(x) col. Ji(x) , Ji(x) soft Us(xi−)Ji(x) ,

χci
= W†

i ϕci
, 𝒜μ

i⊥i
= W†

i [iDμ
⊥i

Wi]
 is a collinear Wilson line introduced to make the collinear fields collinear gauge invariant  Wi

JA0
i (ti) ∈ {χci

(tini+) , χ†
ci
(tini+) , 𝒜i⊥i

(tini+)} ϕs(x) ∼ λ2 , Fμν ∼ λ4 , iDμ
s ϕs(x) ∼ λ4

In PNRQED, non-locality appeared after integrating out 
potential photons which had the same spatial momentum 

scaling as potential fermions retained in the EFT

In, general, we have N-
collinear directions

Each collinear direction must 
be separately collinear gauge 

invariant 

Total operator must be soft gauge 
invariant

Multipole expansion with respect to 
other directions sets soft field to zero

Thus soft gauge invariance is just a 
requirement of color-neutrality
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Operator basis
Ji(x) col. Ji(x) , Ji(x) soft Us(xi−)Ji(x) ,

χci
= W†

i ϕci
, 𝒜μ

i⊥i
= W†

i [iDμ
⊥i

Wi]

JA0
i (ti) ∈ {χci

(tini+) , χ†
ci
(tini+) , 𝒜i⊥i

(tini+)}

ϕs(x) ∼ λ2 , Fμν ∼ λ4 , iDμ
s ϕs(x) ∼ λ4Explicit soft building blocs

At subleading power we can have, for example  - note this is ordinary derivative thanks to multipole expansion∂μ
⊥χci

Next, we can have  but this term can be eliminated using EOMn−Ds χci

No gluon soft building blocks up to λ4

Collinear gage invariant 
building blocks Each costs one power of λ

 is a collinear Wilson line introduced to make the collinear fields collinear gauge invariant  Wi

Leading power currents

Currents are rarely discussed in 
PNRQED, they appear if we are 
concerned with production or 
decay of non-relativistic states
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Example: Soft theorem in QCD

𝒜rad = − gs

n

∑
i=1

ta
i u(pi)( pi ⋅ εa(k)

pi ⋅ k
+

kνεa
μ(k)Jμν

i

pi ⋅ k ) 𝒜

Jμν
i = Lμν

i + Σμν
i = pμ

i
∂

∂piν
− pν

i
∂

∂piμ
+ Σμν

i

SCET derivation: First two terms come 
from time-ordered product of the 

Lagrangian and the operator representing 
non-radiative amplitude

At  we can write for the first time 
soft gluon building block  so this 

term is no longer universal

𝒪(λ4)
Fμν

s ∼ λ4

Low, 1958 
Burnett, Kroll, 1968LBK theorem

Radiative amplitude for 
soft gluon/photon

Is related in a universal way, up 
to order (k)0

To the non-
radiative amplitude k

pi𝒜

23



Perturbative Gravity
Sgrav,EFT = ∫ d4x −g (Λ +

2
κ2

R + c1R2 + c2RμνRμν + …)

Sφ = ∫ d4x −g ( 1
2

gμν [∂μφ] ∂νφ −
λφ

4!
φ4)

Gauge symmetry is the diffeomorphisms group

xμ → yμ(x)

More convenient to work with local translations  

xμ → yμ(x) = xμ + εμ(x) ,

S(0)
EH = ∫ d4x [∂αhμν∂αhμν − ∂αh∂αh − 2∂μhμν(∂αhα

ν − ∂νh)]

ℒ(0) =
1
2

∂μφ ∂μφ −
λφ

4!
φ4

ℒ(1) = −
1
2

hμν (∂μφ ∂νφ − ημν 1
2

∂αφ ∂αφ) −
1
2

h
λφ

4!
φ4

Gravity is an EFT

We will focus on a scalar coupled to gravity
We work in Minkowski  background metric

Massless tensor coupled to matter 
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Soft-Collinear Gravity

h++ ∼ λ−1 , h+μ⊥
∼ 1 , h+− ∼ λ , hμ⊥ν⊥

∼ λ , hμ⊥− ∼ λ2 , h−− ∼ λ3

gμν = ημν + hμν + sμν ≡ gsμν + hμν ,

n−Dsφ ≡ (∂− −
1
2

s−μ∂μ +
1
8

s+−s−−∂+ +
1
16

s−α⊥
sα⊥− ∂+ −

1
4 [Ω−] μνJμν) φ + 𝒪(λ3) .

Ω−αβ = −
1
2 ([∂αsβ−] − [∂βsα−]) + 𝒪(s2)

After some lengthy derivation, which involves a lot of field redefinitions and Wilson lines, we find gravitation covariant derivative  

Coupling to momentum 
GR non-linear terms, not 

interesting for us now
Coupling to angular 

momentum

with spin-connectionGravity is a gauge theory with a charges 
equal to momentum and angular 

momentum!

As always, start from mode decomposition

Dangerous 
components

Wilson lines (parallel transport) save the day!
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The Lagrangian and operator basis

Analog of the field-strength 
tensor: Riemann tensor 

Note that the Riemann tensor 
contains two derivatives R ∼ λ6

Like in QCD, we need collinear Wilson lines to make the field 
collinear gauge invariant

NRQED: ⃗x ⋅ ⃗E = xα
Tvβ Fus

αβ

SCET: xα
⊥nβ

− Fs
αβ

SCET GR: xα
⊥xα′ 

⊥ nβ
−nβ′ 

− Rs
αβα′ β′ 

Universal interaction

: gravitational 
collinear Wilson line

Wc Collinear gauge invariant graviton: dangerous 
components are absent 

26

In GR, it is actually a quadrupole 
rather than dipole — not unexpected 

compare EM vs GR waves 



Example: soft theorem in GR

𝒜rad = −
κ
2 ∑

i

ū(pi)(
εμν(k)pμ

i pν
i

pi ⋅ k
+

εμν(k)pμ
i kρJνρ

i

pi ⋅ k
+

1
2

εμν(k)kρkσJρμ
i Jσν

i

pi ⋅ k ) 𝒜

Like in the gauge theory case the soft theorem comes from the time-ordered product

First available graviton building block is given by a Riemann tensor  Rμνρσ
s ∼ λ6

𝒜rad = − gs

n

∑
i=1

ta
i u(pi)( pi ⋅ εa(k)

pi ⋅ k
+

kνεa
μ(k)Jμν

i

pi ⋅ k ) 𝒜

Turns out, gravitational gauge symmetry is a stronger constraint than YM and even the sub-subleading terms are universal  

Check gauge invariance 
of each term!
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Example: soft theorem in GR

𝒜rad = −
κ
2 ∑

i

ū(pi)(
εμν(k)pμ

i pν
i

pi ⋅ k
+

εμν(k)pμ
i kρJνρ

i

pi ⋅ k
+

1
2

εμν(k)kρkσJρμ
i Jσν

i

pi ⋅ k ) 𝒜

Like in the gauge theory case the soft theorem comes from the time-ordered product

First available graviton building block is given by a Riemann tensor  Rμνρσ
s ∼ λ6

𝒜rad = − gs

n

∑
i=1

ta
i u(pi)( pi ⋅ εa(k)

pi ⋅ k
+

kνεa
μ(k)Jμν

i

pi ⋅ k ) 𝒜

These terms come form covariant derivative: in GR case we see the coupling to momentum and angular momentum  

Turns out, gravitational gauge symmetry is a stronger constraint than YM and even the sub-subleading terms are universal  

Check gauge invariance 
of each term!
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Example: soft theorem in GR

𝒜rad = −
κ
2 ∑

i

ū(pi)(
εμν(k)pμ

i pν
i

pi ⋅ k
+

εμν(k)pμ
i kρJνρ

i

pi ⋅ k
+

1
2

εμν(k)kρkσJρμ
i Jσν

i

pi ⋅ k ) 𝒜

Like in the gauge theory case the soft theorem comes from the time-ordered product

First available graviton building block is given by a Riemann tensor  Rμνρσ
s ∼ λ6

𝒜rad = − gs

n

∑
i=1

ta
i u(pi)( pi ⋅ εa(k)

pi ⋅ k
+

kνεa
μ(k)Jμν

i

pi ⋅ k ) 𝒜

These terms come form covariant derivative: in GR case we see the coupling to momentum and angular momentum  

These terms come for subleading Lagrangian: the “ ” dipole terms ⃗x ⋅ ⃗E

Turns out, gravitational gauge symmetry is a stronger constraint than YM and even the sub-subleading terms are universal  

Check gauge invariance 
of each term!

27



That’s it?
Besides re-deriving known theorems or rewriting GR in with fancy covariant derivative why bother 

with SCET power corrections?

• Energetic particles which couple to soft and collinear radiation are ubiquitous in HEP


• Such radiation leads to large logarithmic correction — typically in QCD, but also in QED and even in weak 
interactions


• EFT allows for scale factorization and resummation of these logs using RG methods


• Many of these corrections are universal — soft theorem are the simplest examples of such universality, but it 
becomes manifest in the EFT formulation 


• Subleading terms are phenomenologically relevant for the precision collider physics


• Some processes start at subleading power 
Further improvement of precision for resummation at the LHC is very difficult without EFT approach 

— systematic study of power corrections started only few years ago
28



Take home messages
• Modern EFT can handle a lot more than just integrating out heavy particles 


• Homogenous power-counting is build in into modes EFT and allows for a systematic 
expansion 


• The price to pay is a very complicated QFT, typically non-local, with x-dependent 
Lagrangian


• Gauge symmetry plays a central role in organizing the expansion (huge advantage 
over diagrammatic methods!) 


• Once you pay the overheads, many things come out almost for free like the soft 
theorems 


• Surprisingly, SCET reveals hidden structure of the gauge symmetry in GR
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