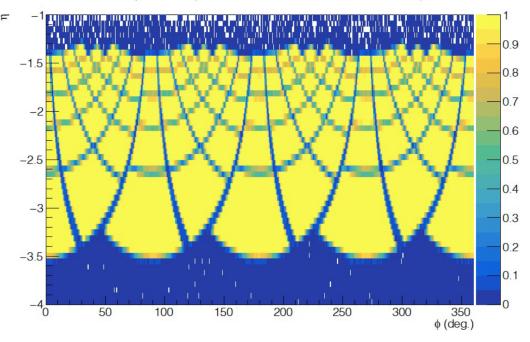
A proximity-focusing RICH for the ATHENA electron endcap

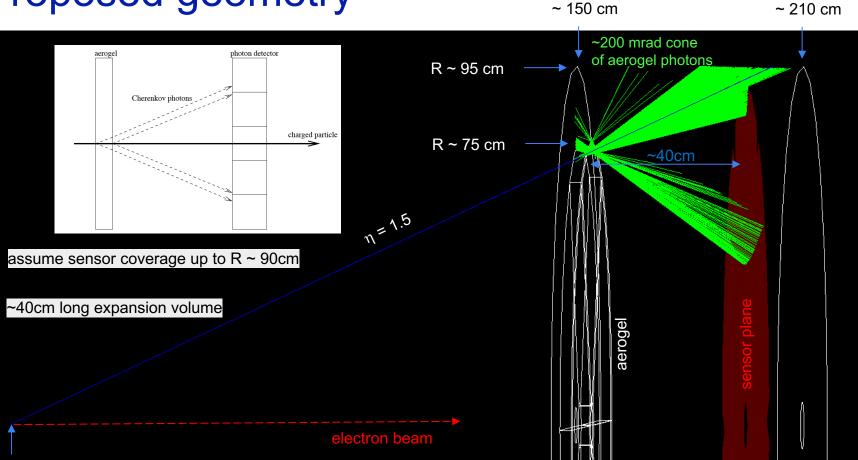

A. Kiselev (BNL)

ATHENA bi-weekly meeting September 30th, 2021

Objective(s)

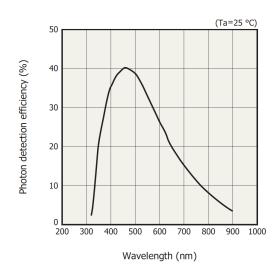
- Look for a "simple" RICH version which
 - Would meet the YR requirements
 - Is kind of "safer" & easier to defend at the proposal writing stage, given the absence of a direct experimental proof of a π/K separation reach by mRICH
 - Has perhaps a similar material budget
 - Is easier to have implemented in the ATHENA simulation (and reconstruction!) sequence NOW
 - Does not preclude one from thinking of a Fresnel-lens-based upgrade to boost the performance

Acceptance (tracks with >3 hits in mRICH)

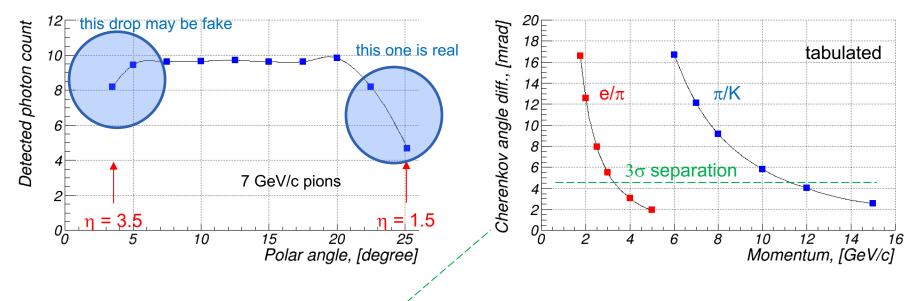


 π^- p:05-11.5 GeV/c && -4 < η < -1 and full azimuth vertex (x,y,z) = (0,0,0) Efficiency = (Tracks with at least 3 hit in mRICH)/ (all tracks)

The Yellow Report leaves some wiggle room for interpretation for the hadron PID in the electron endcap: $3\sigma \pi/K$ separation up to 7 GeV/c (page 21) or up to 10 GeV/c (table 3.1)

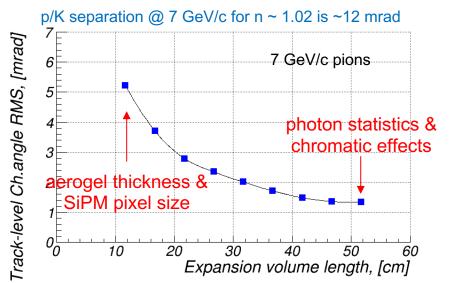

Proposed geometry

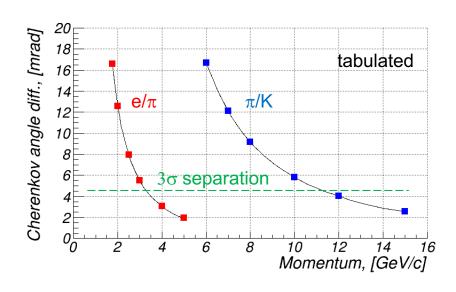
overall length ~ 60cm



Technical details

- Geometry: proximity focusing, no mirrors
 - Aerogel: parameterizations based on CLAS12 data
 - 3cm thick @ density 110mg/cm³ (tuned to match <n> ~ 1.02)
 - Rayleigh scattering
 - Absorption length
 - Acrylic layer: 3mm thick, "cutoff" set @ 350nm
 - ~40cm long (air) expansion volume
 - SiPMs (S13361-3050AE-08 8x8 panels)
 - 3.4 mm pitch
 - QE as given by Hamamatsu
 - 85% geometric fill factor & 70% "safety factor" on top of it
- Custom GEANT4 / ROOT software




Some performance plots

- ~10 p.e. per track and ~1.5 mrad track-level Cherenkov θ resolution as follows from the GEANT -> IRT (indirect ray tracing) pass
- Uniform response across the acceptance

Some performance plots

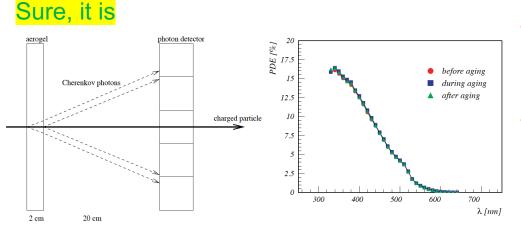
• 3σ e/ π separation up to ~3 GeV/c and π /K separation up to ~11 GeV/c ?!

 Of course, a more comprehensive study in the ATHENA software framework is needed

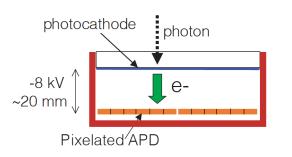
Do the numbers make sense, in general?

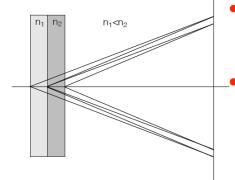
Input for back of the envelope calculation:

- Seemingly, YES
- 3cm thick aerogel with <n> = 1.02; expansion volume ~400 mm; 3.4 mm pitch SiPMs
- Saturated Cherenkov angle for this <n> is ~200 mrad, and we know n_γ~10 makes sense
- Emission point contribution:
 - $\sigma_{\theta} \sim (30 \text{mm} * 0.2 / \sqrt{12}) / 400 \text{ mm} -> 4.3 \text{ mrad}$
- Pixel size contribution:
 - $\sigma_{\theta} \sim (3.4 \text{mm} / \sqrt{12}) / 400 \text{ mm} -> 2.5 \text{ mrad}$
- Chromatic distortion:
 - As a matter of fact, $\sigma_n \sim 0.00034$ for the detected λ range, and $d\theta/dn \sim 5 mrad / 0.001$
 - $\sigma_{\theta} \sim \sigma_{n}$ * d θ /dn = 0.00034 * 5mrad / 0.001 -> 1.7 mrad
- All together in quadrature is ~5.3 mrad, and times 1/√n_√ ~1.65 mrad
 - [makes sense, compare to ~1.5 mrad from the GEANT -> IRT pass as a final fit result]

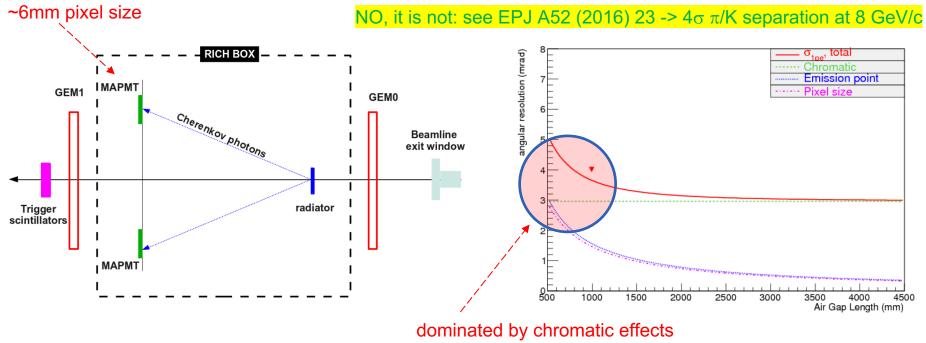

What is missing in the simulation?

Not much


- Aerogel bulk volume refractive index variation (aka forward scattering effect):
 - NIM A876 (2017) 168 [CLAS12 R&D]: σ_{θ} < 1 mrad for n = 1.05 and 3 cm thick aerogel
 - NIM A556 (2006) 140 [LHCb R&D]: $\sigma_{\theta} \sim 0.9$ mrad for n = 1.03 and 5 cm thick aerogel
- Non-flatness of the aerogel-air boundary:
 - NIM A876 (2017) 168 [same CLAS12 paper]: one should be able to maintain the distortions at a level of σ_{θ} < 1mrad even for n = 1.05 aerogel (n = 1.02 case would be ~2.5 times more relaxed with the same surface quality)

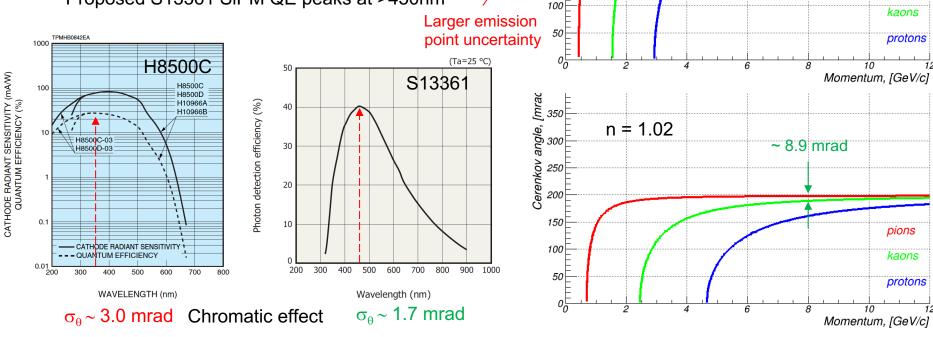

-> compare to ~4.5 mrad single photon Cherenkov angle resolution estimate following from the GEANT -> IRT pass

But Belle II ARICH is limited in π /K to ~4 GeV/c?


- As short as 20cm expansion volume
 - This is your denominator to calculate the Cherenkov θ in a proximity focusing setup
- Emission point uncertainty
 - Dual radiator configuration certainly helps with focusing (at ~4 GeV/c), but <n> ~ 1.05 aerogel produces large ~ 300 mrad saturated rings
- Detection point uncertainty
 - HAPDs had rather large ~6mm pixel size
 - Chromatic effects
 - HAPD PDE spectrum shifted towards small wave length (see next slides)

Single photon angle RMS ~ 15 mrad, dominated by the short expansion volume

But CLAS12 RICH is limited in π /K to ~6 GeV/c?



- The geometry:
 - 2cm thick aerogel with n ~ 1.05
 - Expansion volume ~1 m

Yet single photon angle RMS ~ 4.5 mrad, same order as in the presented 40cm long setup. Why?

CLAS12-related details

- Not all photons are "equally good"
 - H8500C MaPMT (CLAS12 beam test) has a peak of QE ~ 350nm
 - Proposed S13361 SiPM QE peaks at >450nm

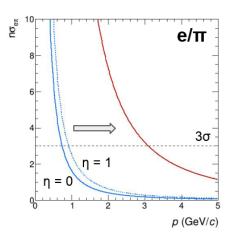
~ 5.5 mrad

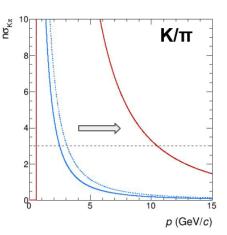
pions

n = 1.05

angle,

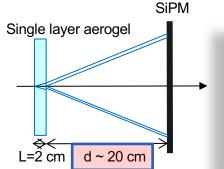
KOV


Cerei Cerei


150

Would such a setup be unique / too ambitious?

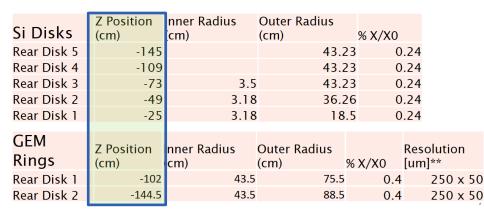
NO, not really



3 separation up to

~ 3 GeV/c ~ 10 GeV/c ~ 18 GeV/c

valuable extension of TOF capabilities

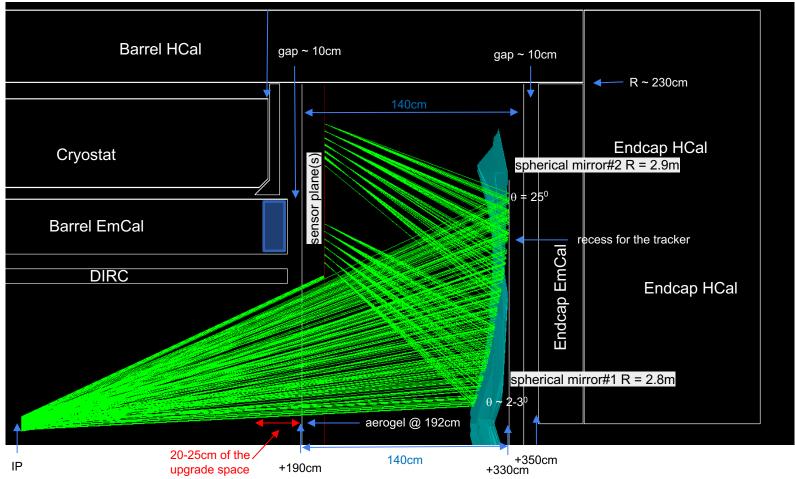


$$\sigma_{\vartheta_{\mathcal{C}}} \text{ (p.e.)} = \sqrt{\sigma_{\vartheta_{\mathcal{C}}}^2} \frac{\text{(chromatic)} + \sigma_{\vartheta_{\mathcal{C}}}^2 \text{ (geometric)} + \sigma_{\vartheta_{\mathcal{C}}}^2 \text{ (pixel)} + \sigma_{\vartheta_{\mathcal{C}}}^2 \text{ (noise)}}{1.1 \text{ mrad} \qquad 6.1 \text{ mrad} \qquad 3.7 \text{ mrad}} = 7.2 \text{ mrad}$$

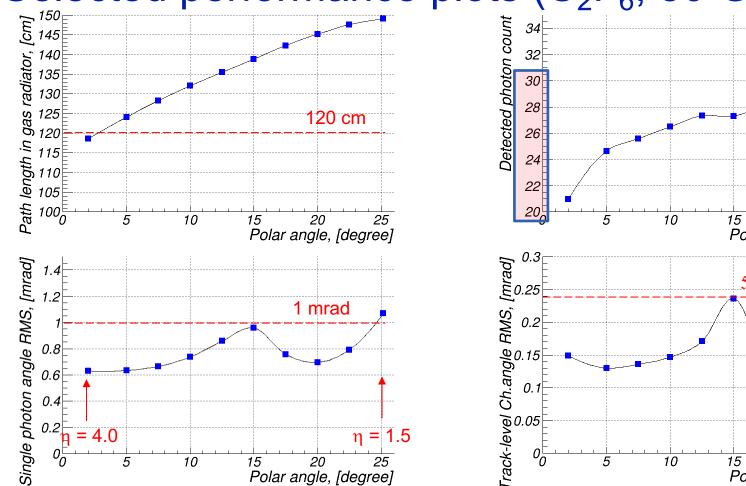
-> therefore reaching ~10 GeV/c in p/K separation with a 40cm long expansion volume may not sound too insane

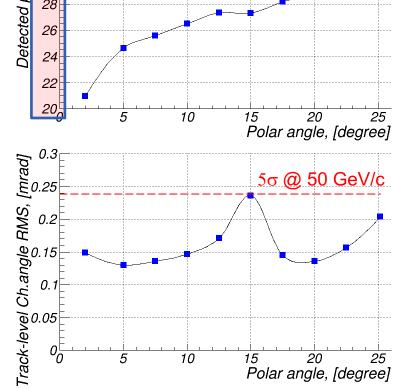
What is coming next?

- Geometry details to be finalized (consider more conventional n ~ 1.03? remove plexiglass? fill with CF₄? projectivity?) ...
- ... and ported to dd4hep
 - already consistent with the DIRC and the tracker (as shown at the I/GD meeting yesterday)
 - the backward EmCal will need to be adjusted anyway because of the beam pipe flange complication)
- Reconstruction codes to be incorporated into the production chain
 - they are identical to the dRICH ones (same IRT algorithm)
 - can probably be taken as a whole (optics description, stepping code collecting photon information, output tree with all the relevant microscopic information)



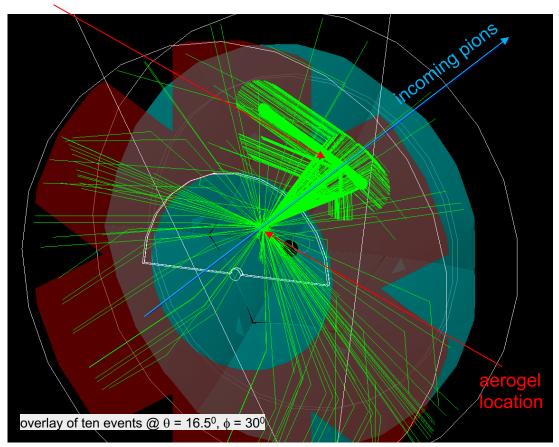
A short update on the *forward* dRICH


Objectives


- Seemingly, it was not possible to guarantee high dRICH performance in the previously allocated fiducial volume, therefore:
 - Solenoid was shifted by 25cm towards the e-endcap (which also helped to balance the forces); new magnetic field map by Valerio as of September 28th
 - dRICH gained extra ~15cm of space
 - This extra space seems to be sufficient to come up with a credible optics configuration, see the next slides
- New configuration:
 - Two spherical mirrors per 60-degree sector
 - 15cm gap between the flat vertical sensor plane and the vessel wall
 - Angular coverage ~ [1.5 .. "4.0"] in η
 - "Upgrade space" of 20-25cm upstream of the vessel

dRICH geometry as of 09-15-2021

Selected performance plots (C_2F_6 , 50 GeV/c π^+)



Action items

aerogel and gas rings split across 2x2 mirrors

- Finalize aerogel performance evaluation (use the same generalized iterative IRT code as for the e-endcap RICH)
- Verify performance in the magnetic field
- Replace truth information by ringfinder-like one where possible; merge aerogel and gas measurements in a singe σ count
- Factorize reconstruction part out
- Implement in dd4hep geometry (by Chris Dilks)

