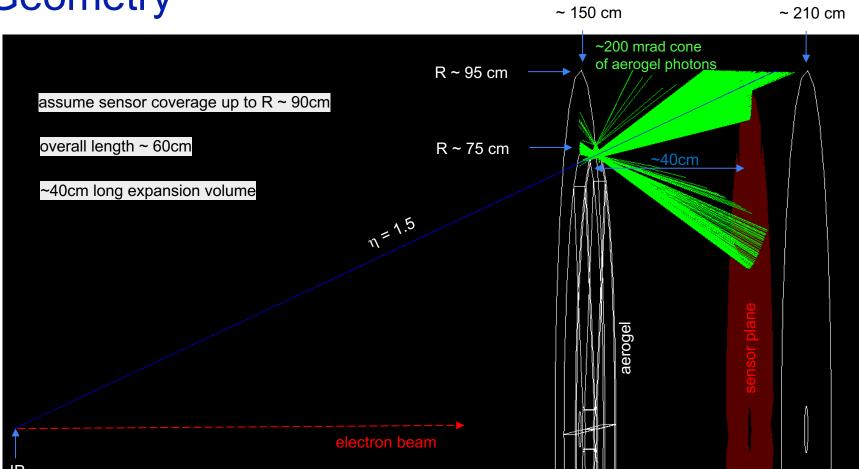
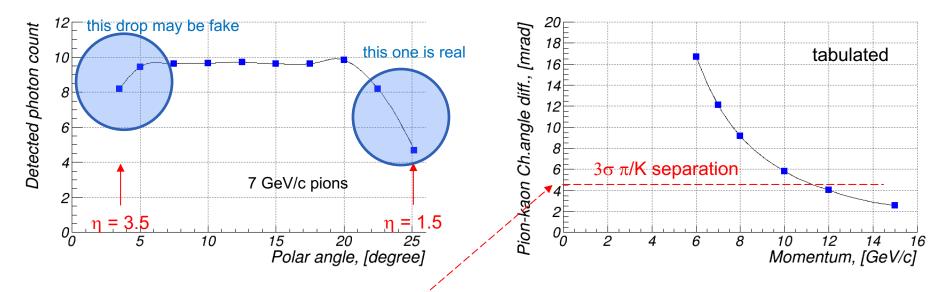
Proximity-focusing RICH for ATHENA electron endcap

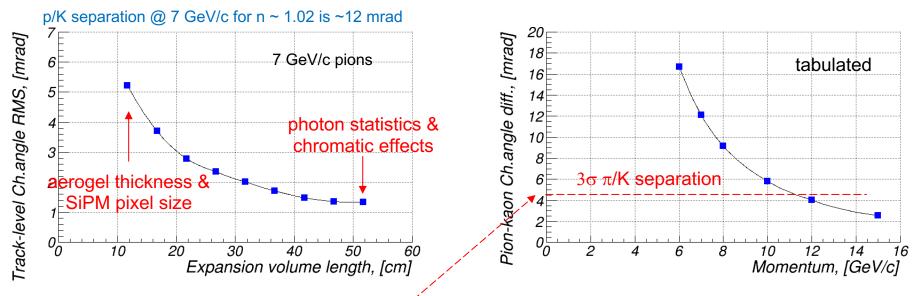

A. Kiselev (BNL)

ATHENA I/GD meeting September 29th, 2021


Objectives and setup details

- Look for a "simple" complementary option to mRICH
- Geometry: proximity focusing, no mirrors
 - Aerogel: model#3 (CLAS12 data), 3cm thick @ density 110mg/cm^3 (<n> ~ 1.02)
 - Rayleigh scattering, absorbtion
 - Acrylic: 3mm thick, "cutoff" set @ 350nm
 - ~40cm long air expansion volume (how about CF_4 ?)
 - SiPMs (S13361-3050AE-08 8x8 panels)
 - 3.4 mm pitch
 - QE as given by Hamamatsu
 - 85% geometric fill factor & 70% "safety factor" on top of it
- Same custom GEANT4 / ROOT software as used for dRICH evaluation

Geometry



Some performance plots

- ~10 p.e. per track and ~1.5 mrad track-level Cherenkov θ resolution
- Uniform response across the acceptance

Some performance plots

- ~10 p.e. per track and ~1.5 mrad track-level Cherenkov θ resolution
- Uniform response across the acceptance
- Configurations with mirrors do not seem to be practical if the goal is to cover the angular acceptance all the way up to ~25⁰

Back of the envelope calculations

- Basic numbers:
 - Consider a ~10 GeV/c particle hitting 3cm thick aerogel with $\langle n \rangle = 1.02$ at ~90⁰
 - Take expansion volume ~400 mm away and 3.4 mm pitch SiPMs
 - Saturated Cherenkov angle for this <n> is \sim 200 mrad, and we know $n_{\gamma} \sim$ 10 makes sense
- Emission point contribution:
 - σ_{θ} ~ (30mm * 0.2 / $\sqrt{12}$) / 400 mm -> 4.3 mrad
- Pixel size contribution:
 - $\sigma_{\theta} \sim (3.4 \text{mm} / \sqrt{12}) / 400 \text{ mm} \rightarrow 2.5 \text{ mrad}$
- Chromatic distortion:
 - As a matter of fact, $\sigma_n \sim 0.00034$ for the detected λ range, and d θ /dn ~ 5mrad / 0.001
 - $\sigma_{\theta} \sim \sigma_{n}^{*} d\theta/dn = 0.00034 * 5 mrad / 0.001 -> 1.7 mrad$
- All together in quadrature and times $1/\sqrt{n_{\gamma}}$: ~1.65 mrad
 - [makes sense, compare to ~1.5 mrad from the GEANT -> IRT pass as a final fit result]

What is missing in the simulation?

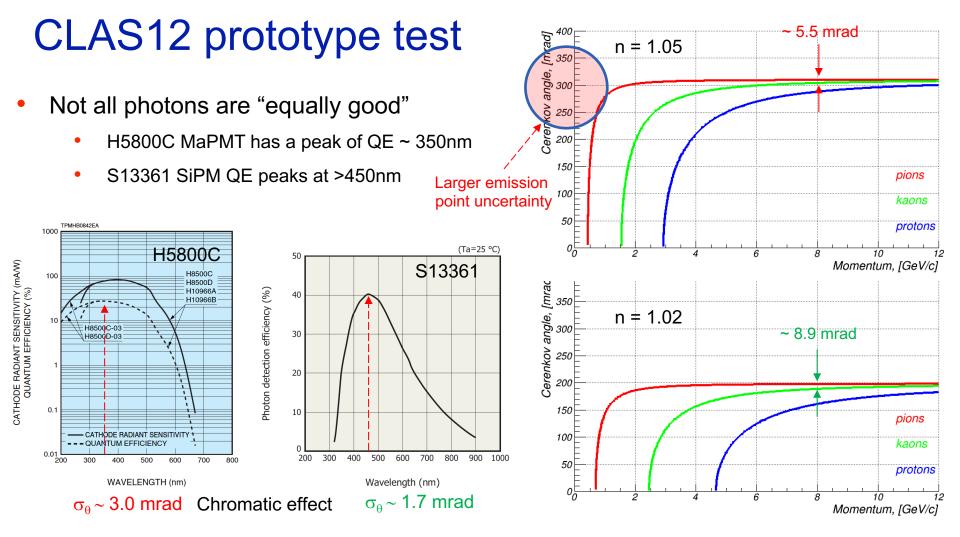
Not much

- Aerogel bulk volume refractive index variation (aka forward scattering effect):
 - NIM A876 (2017) 168 [CLAS12 R&D]: $\sigma_{\theta} < 1$ mrad for n = 1.05 and 3 cm thick aerogel
 - NIM A556 (2006) 140 [LHCb R&D]: $\sigma_{\theta} \sim 0.9$ mrad for n = 1.03 and 5 cm thick aerogel
- Non-flatness of the aerogel-air boundary:
 - NIM A876 (2017) 168 [same CLAS12 paper]: one should be able to maintain the distortions at a level of σ_{θ} < 1mrad even for n = 1.05 aerogel (n = 1.02 case would be ~2.5 times more relaxed with the same surface quality)

-> compare to ~4.5 mrad single photon Cherenkov angle resolution estimate following from the GEANT -> IRT pass

• Anything else?

CLAS12 prototype test


~6mm pixel size **RICH BOX** σ_{1pe} , total resolution (mrad) Emission point **I**MAPMT GEM1 ····· Pixel size GEM0 Cherenkov Photons ngular ı Beamline exit window radiator Trigger scintillators **MAPMT** 500 1000 1500 2000 2500 3000 3500 4000 4500 Air Gap Length (mm)

dominated by chromatic effects

- The geometry:
 - 2cm thick aerogel with n ~ 1.05
 - Expansion volume ~1 m

Yet single photon angle RMS ~ 4.5 mrad. Why?

EPJ A52 (2016) 23: $4\sigma \pi/K$ separation at 8 GeV/c

