

RHIC Run 22 Plans and Highlights

V. Schoefer

11/9/2021

Overview

- Run 22 Operational modes
- Available equipment
- Experiments for operation

RHIC Polarized Beam Complex

	Max Energy [GeV]	Pol. At Max Energy [%]	
Source+Linac	0.2	82-84	
Booster	2.5	~80-84	
AGS	23.8	67-70	p-Carbon
RHIC	255	55-60	Jet, full store avg*

* Includes both ramp loss and store decay

		Absolute Pol	arimeter (H	jet) RHIC pC Polarimeters	S
ore avg*	PHE	<u>NIX</u>		+	
e decay (lo	Spin Rotators ngitudinal polariz	zation)	STAR	Spin Rotators (longitudinal polarization)	7
Pol. H Sou 200	MeV Polarimete	BOOSTER	AGS	Helical Partial Siberian Snake	

Spin flipper

	Relative Ramp Polarization Loss (Run 17, full run avg)
AGS	17 %
RHIC	8 %

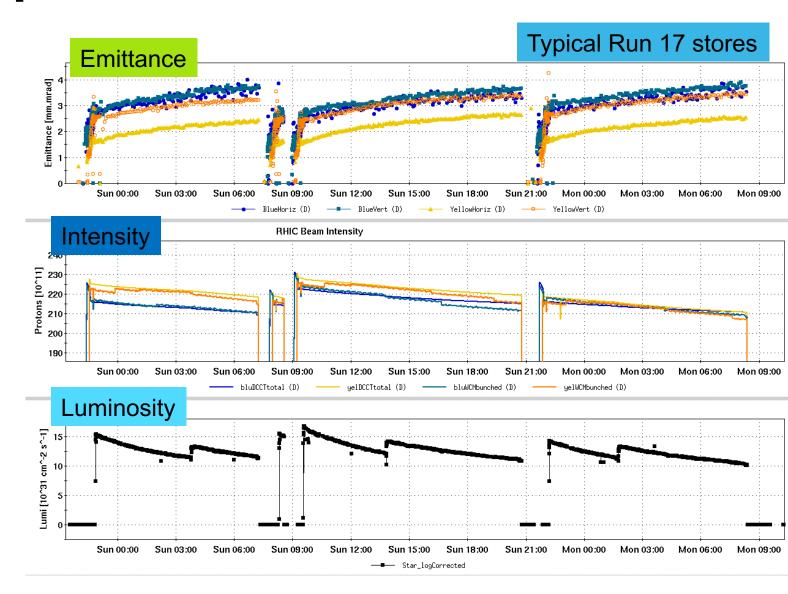
2 Siberian Snakes/ring

Run 22 Operational Modes

Physics program modes

Species	RHIC Top Energy [GeV/n]	Purpose	
Pol. Protons	255	Colliding beam physics (16 wks)	
Au	26.5	CeC X (2 wks)	

PAC recommended finishing CeC time 'early' (first two months of operation)


APEX modes

Species	RHIC Top Energy [GeV/n]	Purpose
³ He (unpolarized)	100	Polarimetry development (blue)
Au	3.85	LEReC experiments

No *new* lattice required for any planned operating mode.

Polarized proton operation

- Polarized proton collisions at 255 GeV
 - 16 weeks
 - + 2 weeks of CeC
- Conditions similar to Run 17
 - 2 x 10¹¹ protons/bunch
 - Collisions at IP6 only
 - Cogging: abort gap collision at IP8-2
 - Luminosity capped at 14×10³¹ cm⁻²s⁻¹
 - (limited) Leveling via second beta* squeeze
 - No crossing angle/misteering
 - Transverse polarization only (no rotators)
- Operational RF:
 - Inject/accelerate: 9 MHz+Landau
 - Rebucket: 28 MHz
 - Store: 28 MHz + 197 MHz

Scheduling and plans

11/1-5 - RHIC Dry Run 11/8 - AGS Beam startup 11/15 - RHIC 4K wave start ~0001 on 11/19 - Beam setup in RHIC (Run 17: 12 days of setup to \hat{p} physics)

Commissioning plan:

- Get to 8 hour \hat{p} physics stores as soon as possible
 - (Re)Commissioning of \hat{p} equipment
- Commission injector Au for CeC behind stores
 - Mode switching Au
 → pp in the injectors is non-trivial
- Setup AGS Au for LEReC and ³He setup as available and required

RF Availability

Freq [MHz]	Oper. Volts/cav	N cav	Purpose
9	40	1	\hat{p} inj,acc
28	150	2	\hat{p} rebucket, Au acc.
197	10-150	1	\hat{p} 'squeeze', synch tune spread
201 (Landau)	50	1	Au,He transition damping

No operational request for full Au rebucketing -> no conditioning of additional 197 MHz cavities unless there is a request

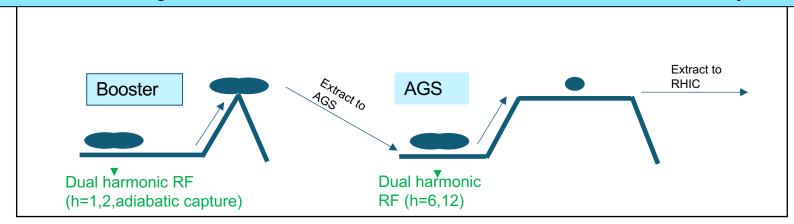
Other equipment

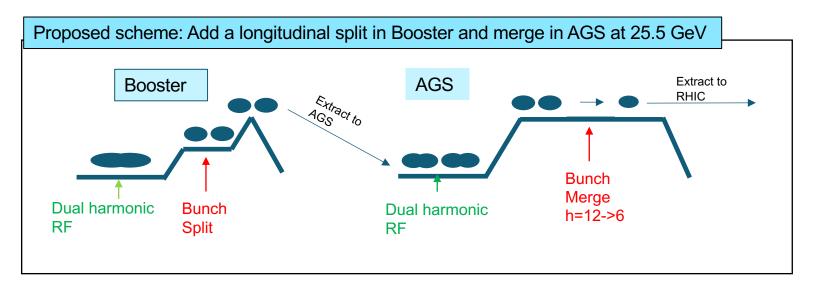
- Polarization
 - p-carbon polarimetery
 - Jet polarimeter (and vertical intensity profiles)
 - Snakes
 - NO rotators for operation
 - If needed for APEX ('spin navigator' etc), the sooner we know, the better
- Cooling
 - NO stochastic cooling for operation
 - (only one APEX request, withdrawn for this run)

Injector Improvement: Bunch split and merge scheme

Present scheme:

A single pulse from the source remains a single bunch from source to collision

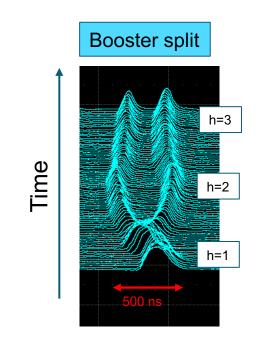

Booster and AGS injection both have defocusing RF harmonics


Add a 1->2 bunch split during acceleration in the Booster

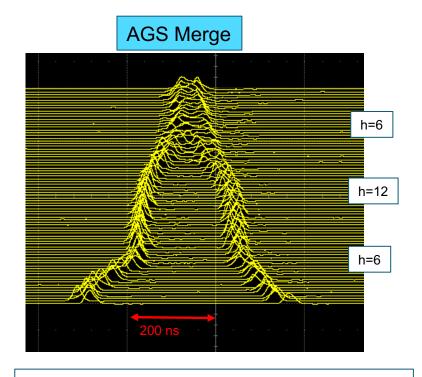
Reduces peak current at AGS injection by $\sqrt{2}$ (optimally)

Expectation:

20% trans. Emittance reduction 12% rel. polarization improvement (measured in Run 13) Present scheme: Single bunch from source to RHIC, dual harmonic RF at Booster and AGS injection



Injector Improvement: Bunch split and merge scheme


January 2021 pre-run test

- Test the longitudinal mechanics
- Basic proton setup (no snakes)
- Interleaved with two other proton efforts
- Synch period at AGS flattop is 12 ms
 - Merge takes a full second
 - Hard to maintain constant, adiabatic conditions

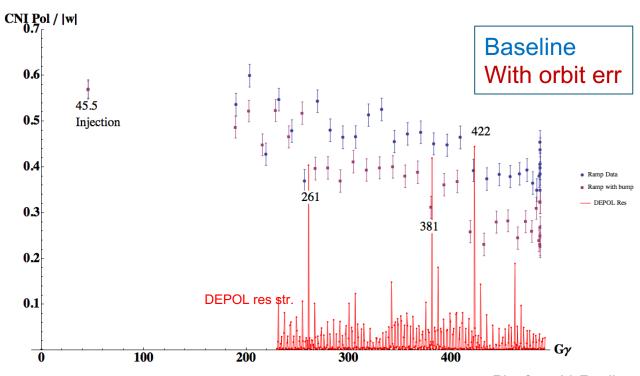
- Capture on h=1, defocus (h=2)
- Accelerate to merge porch
- Split h=1→h=2
- 'Squeeze' h=3 to get bunch spacing for BtA transfer

AGS RF:

- Capture on h=6, defocus (h=12)
- Accelerate to flattop
- Squeeze h=6 → 12
- Merge h=12 \rightarrow 6

APEX Results for Operations

RHIC Imperfections and Resonance Overlap


Run 17 APEX

- Slow ramp (~45 min!)
- Mid-ramp pC measurements
- with and without applied orbit imperfections

Lessons:

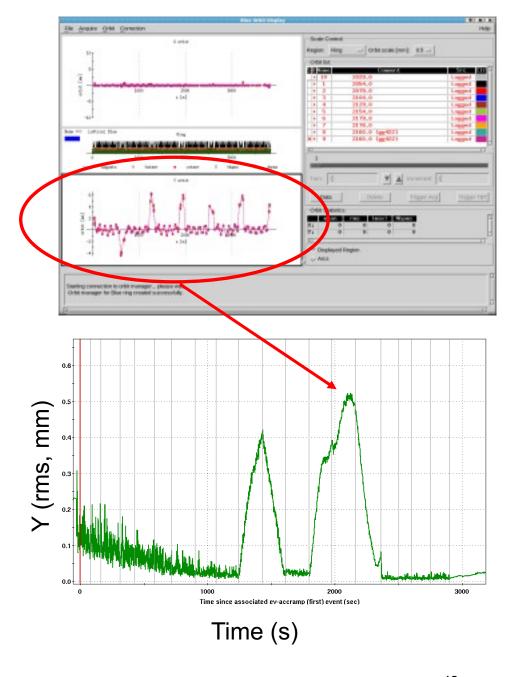
Polarization loss localized at major intrinsics (not obvious from previous full ramp speed measurements)

Worse with a strong overlapping imperfection

Plot from V. Ranjbar

APEX Results for OperationsRHIC Imperfections and Resonance Overlap

Attempts to infer absolute orbit from measurements are so far unsuccessful


Proposal:

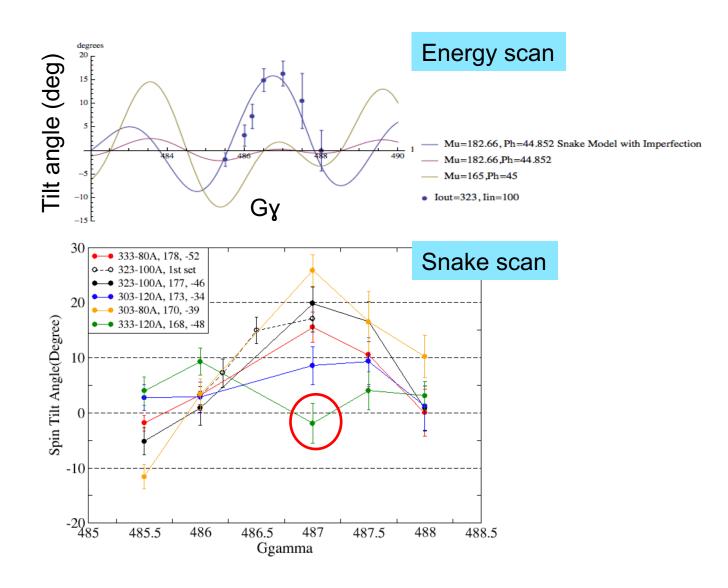
Brute force scan of individual imperfection knobs at three strongest resonances

3 resonances x 2 phases = 6 scans 4 points per scan = 24 points (= 24 ramps, which could be physics ramps)

5 pC measurements at injection and store (each) gets +/- 3% pts uncertainty for transmission each ramp ($P_{final}/P_{initial}$)

Simulations necessary (underway) to determine optimal scan parameters to get measurable response

Spin Tilt at 255 GeV


Spin away from vertical by 12-15° at pC location at 255 GeV ($G_{\gamma} = 487$)

- Run 17 snake and energy scan
 - Snake detuning+large imperfection (0.2) mimics effect

There *are* snake settings that gave zero tilt at 255 GeV (locally)

Relevant to EIC: Understanding both the actual source and corrective mechanisms (not necessarily identical tasks)

Important for determining locations for polarimetry

Summary

- RHIC is currently prepared to deliver four operational modes for physics and APEX
 - 255 GeV protons
 - 26.5 GeV/n Au
 - 3.85 GeV/n Au
 - 100 GeV/n He
- A few improvements to operation are expected, two of which are the results of previous APEX experiments