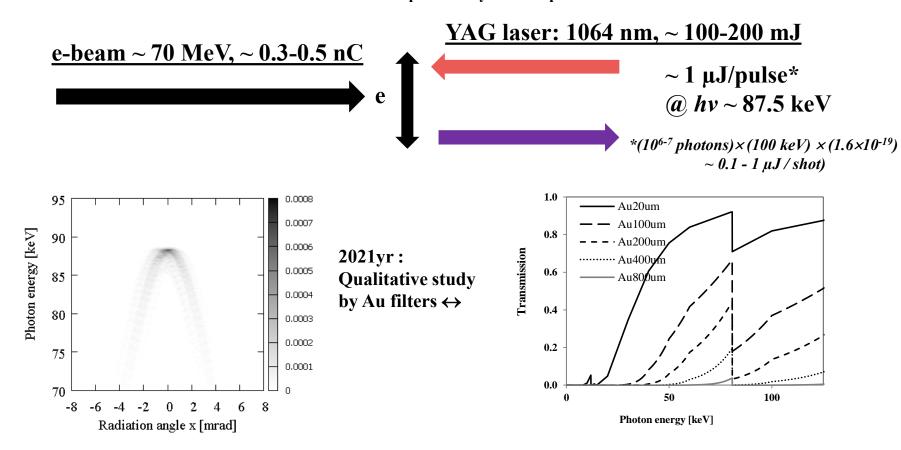
AE87: Hard X-ray ICS status report

Nonlinear ICS by $a_0 \sim 1$, CO_2 laser @ $hv \sim 10 \ keV$

 $\rightarrow \rightarrow \rightarrow$ Linear ICS by YAG laser @ hv ~ 100 keV

BNL ATF user meeting January 18, 2022yr

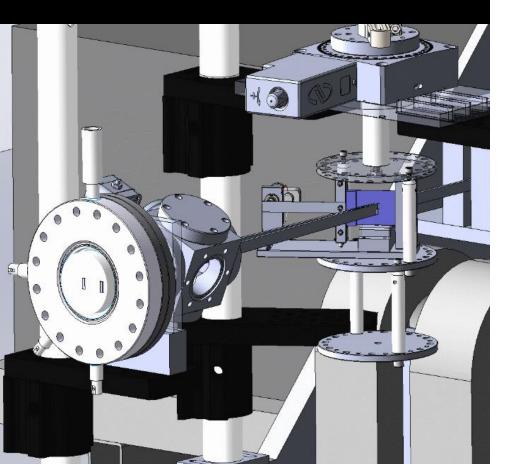
Yusuke Sakai, Oliver Williams, *Zhong Zhong, James Rosenzweig *UCLA*, *BNL NSLS

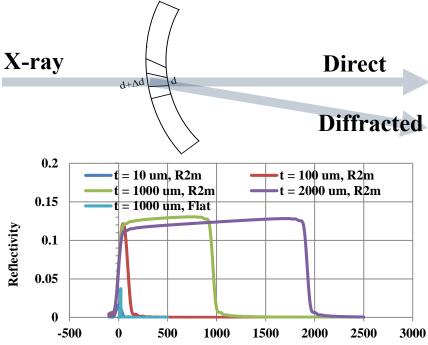

Funding source: DOE Accelerator Stewardship Received (DE-SC0009914)
DOD DARPA GRIT Received (20204571)

Experiment Goals HARD X-ray ICS at hv ~ 100 keV range

- **☼** Medical applications: Medicine as Photon activation (example: using a Au nanoparticle)
- **♦** Strong field physics: Bi-harmonic Compton interaction with ATF's CO₂ laser
- **♦** Hard X-ray optics developments*: DDS measurement & Focusing or Collimation

* OAM investigation ↔ Measurement of Higher order harmonics (contain OAM) spectrum by circular polarized multi TW laser




{Goals of AE87 as of now: Establish basic set up of ICS by YAG & CO₂ lasers}

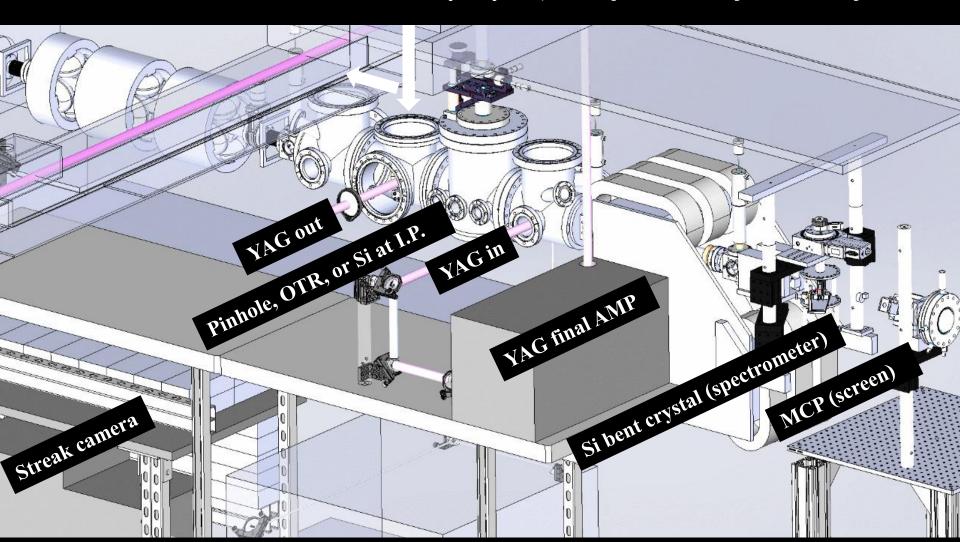
Single shot DDS measurement at X-ray energy of 87.5 keV for quantitative study

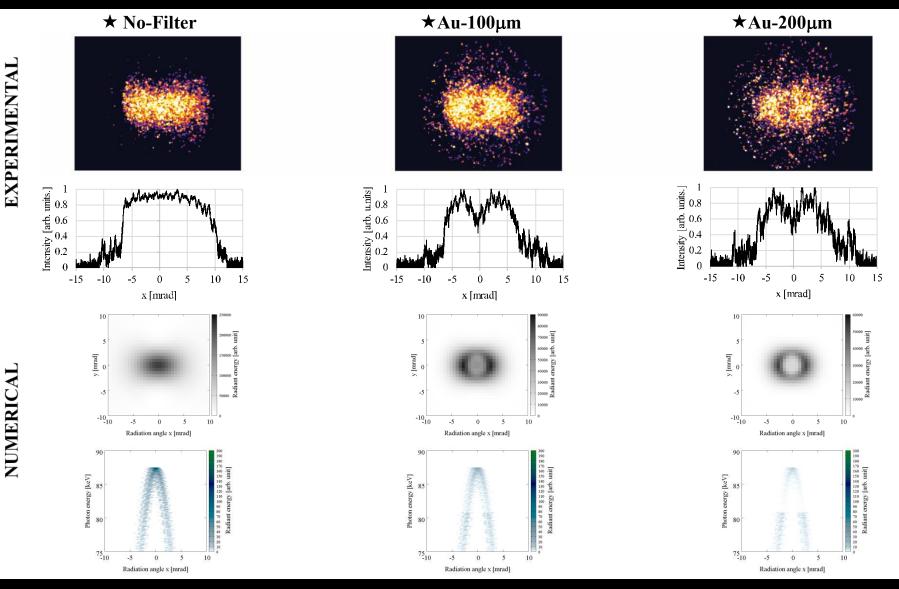
→ Thick Laue Bent Crystal Efficiency > Bandwidth

Multi layer crystal: 5 - 20 keV (CO₂'s ICS component) Thick crystal: 20 keV - 200 keV (YAG's ICS component)

Theta-Theta Bragg [urad]
Rocking curve for Bent crystal,
R2m, Si[111], X-ray energy 80 keV. By XOP v2.3.

- * Radius of curvature R: 2.5 m
- **★** Thickness: 1 mm
- **★** Bragg angle at 85keV: ~ 22 mrad
- * Crystal to MCP screen 0.3 m
- ***** Expected dispersion at screen: 10-20 mm:
- **★** Band width: ~ 10 keV
- **★** Reflectivity (Efficiency): ~10%

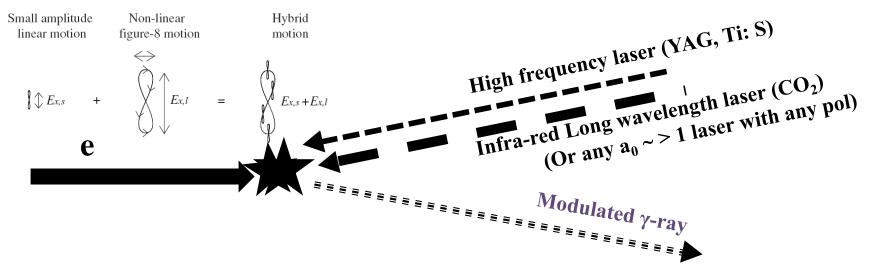

Stats: Diffraction not observed yet.


Note: This is a hard experiment as expected.

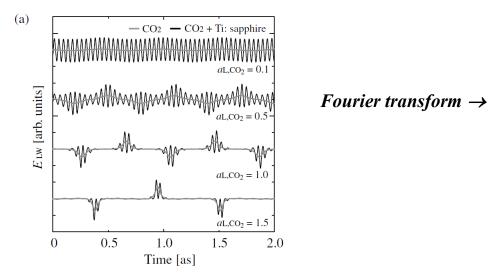
YAG ICS Set-up in BL1 as of now

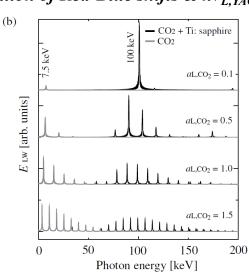
2020-2021yr: * Modification: Final PMQ's location is adjustable \rightarrow e-beam focus down to σ 20-30 μ m achieved.

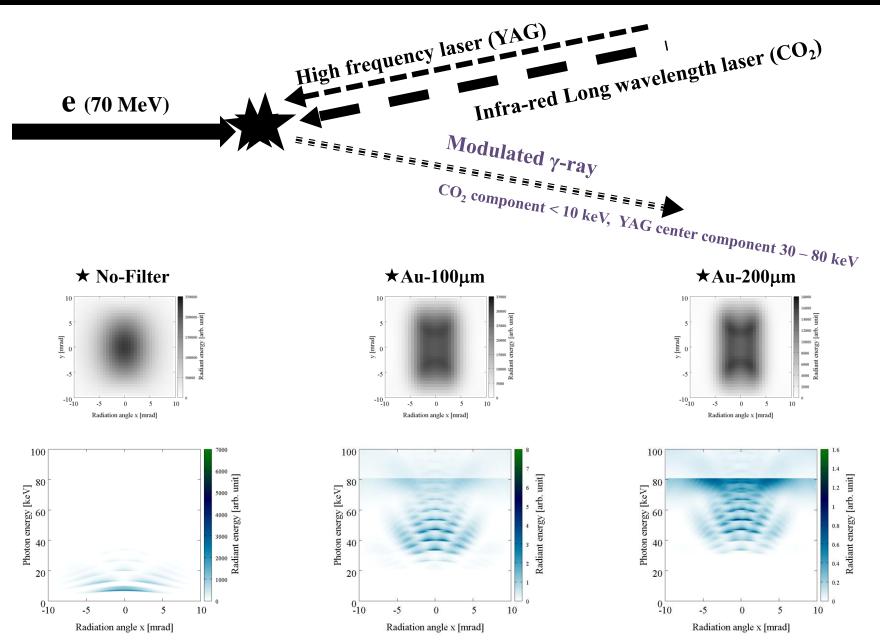
* Installation of YAG laser's preamplifier (20 mJ output) has been complete → Final output 100-200mJ



Report to be submitted as:


* Journal of Applied Physics, Hard X-ray inverse Compton scattering at photon energy of 87.5 keV * RSI or JAP, Electron beam controlled deflection of 1µm laser in Si semiconductor plasma


Moving forward → Preparation for Bi-harmonic nonlinear Compton experiment

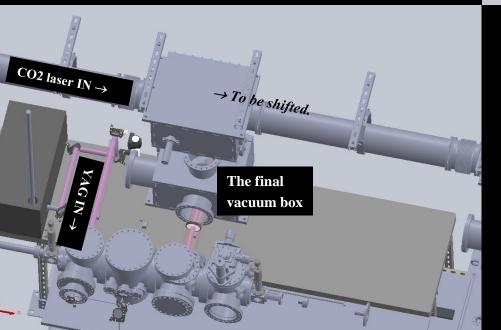

Pulsed waveform modulation of Hard X-ray component at less than $< 10^{-18}$ s time scale

Observation of Red-Blue shifts & $hv_{L,YAG} \pm hv_{L,CO2}$

Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

Only CO₂'s component

Bi-harmonic YAG's component


Experimental plans of AE87, year 2022

Bi-harmonic Compton laser optics set up:

Input of CO₂ laser and YAG laser are opposite direction CO₂ laser final optics has Dia ³/₄" hole on axis

 \leftrightarrow YAG laser system should be protected by Di-electric mirrors.

 \leftrightarrow CO₂ laser system should be protected by plasma shutter.

 \leftarrow Installation of the final box for CO_2 laser transport required asap.

(Note: The upper vacuum box needs to be shifted by an inch toward upstream.)

→Then try to recover nonlinear Compton set-up with the 5TW CO₂ laser.

→ Meanwhile, try to resolve the YAG ICS spectrum
by bent crystal if it is possible.

(Note: Now the final YAG OAP has been damaged, and taking extra time to be manufactured.)

2022 PLAN

Feasibility of producing 87.5 keV Hard X-ray for applications is confirmed.

&

K-edge filter is verified to be sufficient to observe bi-harmonic Compton effect.

 \downarrow

K Recover, or almost new installation of, nonlinear CO₂ ICS set up.

- 1. Complete laser vacuum transport. <In March-April ?>
- 2. Installation of CO₂ laser optics. <Summer>
- 3. Reflection, Main beam power, Laser distribution measurements at low power regen signal. <Summer >
- 4. CO₂ laser high power test (Protection of YAG system & source CO₂ laser) <Autumn>
- 5. Initial a_0 measurement of upgraded 5 TW ${\rm CO_2}$ laser through harmonic components of nonlinear ICS (~1 TW at the last nonlinear ICS experiment) <Winter>

※ Single shot DDS measurement by Bent crystal At ~100 keV range by YAG ICS.

Note:

There are major restrictions, boundary conditions, set by lead time of manufacturing custom optics recently.

THANK YOU.

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	68 - 75 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	0.3-0.5 nC
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	NONE
Transverse size at IP (s)	mm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	~ 30 um
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge	1
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	TBD

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M^2		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	ANY
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	NORMALIZED VECTOR POTENTIAL a0 >= 1
	Pulse Mode		Single		SINGLE
	Pulse Length	ps	2		ANY
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	5
	M^2		~2		ANY
	Repetition Rate	Hz	0.05		100 SHOTS/DAY
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	LINEAR FIRST (THEN CIRCULAR ♦)

[♦] NOTE: Circular polarization is required for reconsideration of OAM study by nonlinear Compton experiment in 2023-2025yr.

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	100		
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>98	>1067		
Nd:YAG Laser System	Units	Typical Values		Comments	Requested Values
Wavelength	nm	1064	Single p	pulse	
Energy	mJ	5			
Pulse Width	ps	14			
Wavelength	nm	532	Frequen	ncy doubled	
Energy	mJ	0.5			

Pulse Width

10

ps

Special Equipment Requirements and Hazards

Any special equipment:

♦ None

Hazards & Special Installation Requirements:

♦ All items have been included in updated ESR.

Large installation (chamber, insertion device, etc.):

♦ Installation of CO₂ laser vacuum transport, especially the final box toward Compton chamber as soon as possible.

Introducing new magnetic elements:

♦ None

Experimental Time Request CY2022 Time Request

Capability	Setup Hours	Running Hours	
Electron Beam Only	0	0	
Laser* Only (in Laser Areas)	0	0	
No beams in Experimental Hall	1week (Laser vacuum box installation)	0	
Only regen CO ₂ laser in EH	1week (CO2 optics installation)	1week	
TW CO ₂ laser in EH	0	1week _(CO2 laser high power test)	
CO ₂ Laser + Electron Beam	1week	2week _(CO2 nonlinear ICS)	
YAG Laser + Electron Beam	1week	1week _(YAG ICS Spectrometer)	

Note: Scheduling depends on custom laser optics availability.