

Tunable Positron Source

 CO_2 -Laser based post-processing of ATF e⁻ beam driven positron-electron jets

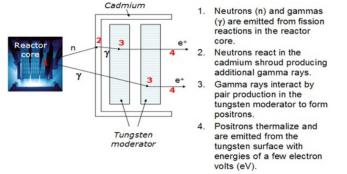
A. Sahai (PI), CU Denver, H. Chen (co-PI), LLNL

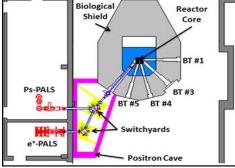
V. Harid, M. Golkowski, CU Denver J. Resta-Lopez, Cockcroft Inst. & U Valencia S. Palaniyappan, LANL, J. Cary, Tech-X & CU

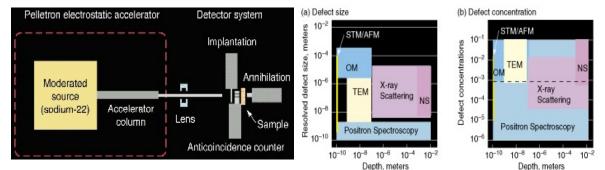
FST 194

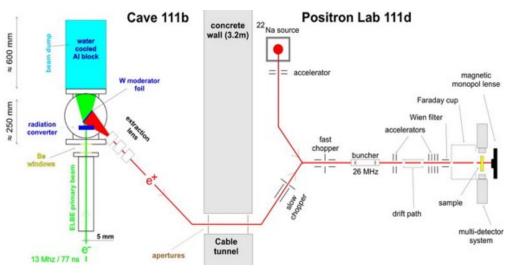
Funding source: CU multi-year grant (ongoing) DOE (applied)

US Patent 16,770,943




- positron source with tunable properties control the interaction
 CO₂ laser-driven post-processing of ATF e-beam driven particle showers
- tunable yet collisionless moderator
- NOT aimed at production of high-energy *low-emittance positron beams* for collider applications
- long wavelength CO₂ laser (compared to Ti:Sapphire): larger plasma structures – easier to physically overlay with the showers slower structures for a lower plasma density – laser velocity slower for same density
- numerous applications benefit from a tunable positron beam


Current positron sources



PULSTAR NCSU Fission reactor - positron source user-facility [source: https://www.ne.ncsu.edu/nrp/user-facilities/intense-positron-beam/]

LLNL Na-22 beta plus positron source and positron spectroscopy [source: https://str.llnl.gov/str/Howell.html]

nuclear reactor

radioactive nuclei

HZDR Germany - ELBE Positron (EPOS) facility [source: http://positron.physik.uni-halle.de/EPOS/]

Numerous positron applications

PHYSICAL REVIEW B

VOLUME 3, NUMBER 3

1 FEBRUARY 1971

Channeling of Positrons

J. U. Andersen^{*} and W. M. Augustyniak Bell Telephone Laboratories, Murray Hill, New Jersey 07974

and

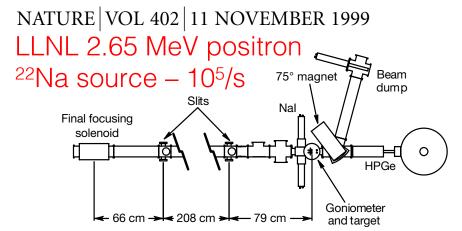
E. Uggerhøj Institute of Physics, University of Aarhus, 8000 Aarhus C, Denmark (Received 7 July 1970)

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

CHANNELING RADIATION FROM POSITRONS

M. J. Alguard,* R. L. Swent,* R. H. Pantell,* B. L. Berman, + S. D. Bloom, + and S. Datz++

VOLUME 77, NUMBER 10


PHYSICAL REVIEW LETTERS

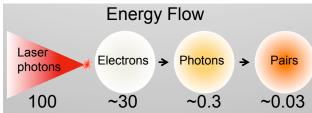
2 September 1996

Increased Elemental Specificity of Positron Annihilation Spectra

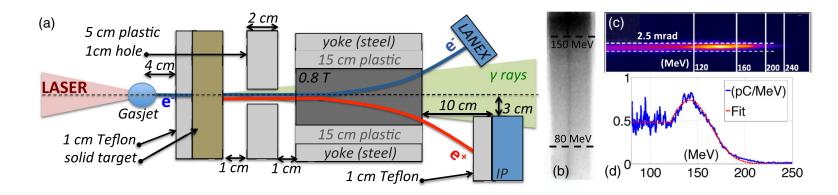
P. Asoka-Kumar,¹ M. Alatalo,¹ V. J. Ghosh,¹ A. C. Kruseman,² B. Nielsen,¹ and K. G. Lynn¹ ¹Brookhaven National Laboratory, Upton, New York 11973 ²IRI, Delft University of Technology, Mekelweg 15, NL-2629JB Delft, The Netherlands Spatial sampling of crystal electrons by in-flight annihilation of fast positrons

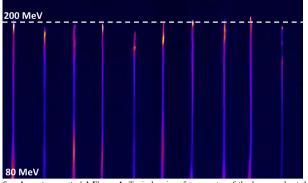
A. W. Hunt*†, D. B. Cassidy*†, F. A. Selim‡, R. Haakenaasen§, T. E. Cowan†, R. H. Howell†, K. G. Lynn|| & J. A. Golovchenko*§#

...development of practical atomic-scale channeling measurements of electronic spin densities, and momentum profiles in addition to valence and bonding e⁻ density maps.


LLNL – kJ laser positron-production

 $\propto \underline{I_e}$ Au Target \mathcal{E}_{sheath} Sheath Positrons L_{ion} Laser Field Short-pulse Laser Positron e+ Acceleration e+ Electron cloud Blow-off plasma Target S. Wilks Long-pulse Laser A - 20 mm target; 312J, 10 ps 20-ĒĞS B - 6.4 mm target; 130J, 1ps C - 2 mm target; 305 J, 10 ps D - 2 mm target; 280 J, 10 ps Number/MeV/Sr (x10⁹) E - 2 mm target; 323 J, 10 ps 15 F - 2 mm target; 812 J, 10ps arg et Pairs → 10-F DΕ B С ~0.03 5 🔪 👅 🖢 0.0 10 15 20 25 -60 -40 -20 20 40 60 80 100 0 Angle (Degrees) Energy (MeV)


H. Chen et. al. PRL 105, 015003 (2010)



Laser shower production

Supplementary material Figure 1: Typical series of ten spectra of the laser-accelerated electron beam, as recorded on the LANEX screen before the insertion of the solid target. The overall electron beam charge fluctuated within less than 10% and the peak electron energy was consistently of the order of 200 MeV.

Laser shots NOT consistent !

increases for materials with higher atomic number. This trend is quantitatively confirmed by integrating the experimental spectra in the range $90 < E_{e^+}$ (MeV) < 120 (see Table I and Fig. 3). Within this energy range, a maximum positron number of $(2.30 \pm 0.28) \times 10^5$ is obtained for the material with the highest Z (Pb). Fitting the data keeping j as a free parameter, we obtain a best fit for $j = 2.1 \pm 0.1$

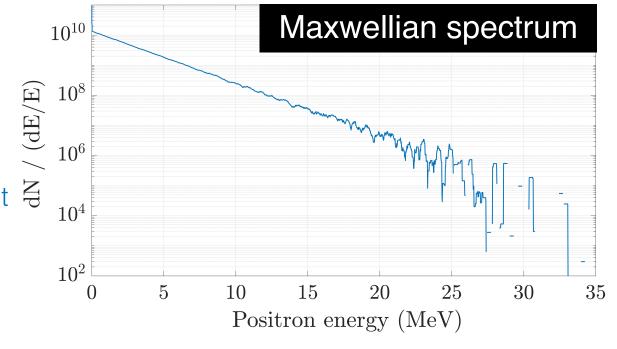
PRL 110, 255002 (2013)	PHYSICAL	REVIEW	LETTERS	21 JUNE 2013
------------------------	----------	--------	---------	--------------

Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams

G. Sarri,¹ W. Schumaker,² A. Di Piazza,³ M. Vargas,² B. Dromey,¹ M. E. Dieckmann,¹ V. Chvykov,² A. Maksimchuk,² V. Yanovsky,² Z. H. He,² B. X. Hou,² J. A. Nees,² A. G. R. Thomas,² C. H. Keitel,³ M. Zepf,^{1,4} and K. Krushelnick²

Jan 21, 2022, 24th Accelerator Test Facility (ATF) Users' Meeting

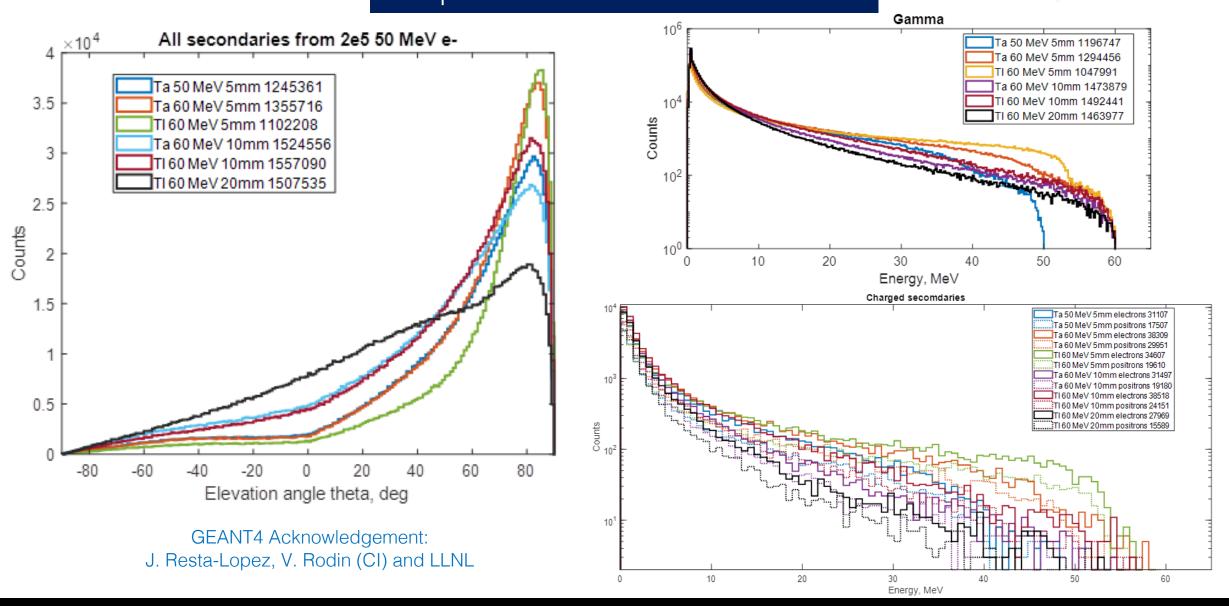
160



raw positron-electron showers

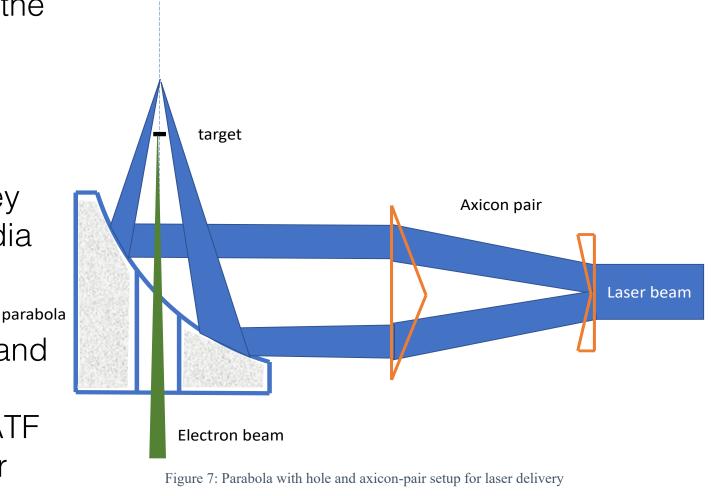
shower ≠ beam pair-plasma ≠ beam

- showers > MeV electrons on converter target
- positrons NOT isolated
- positrons still divergent
- un-localized in momentum space

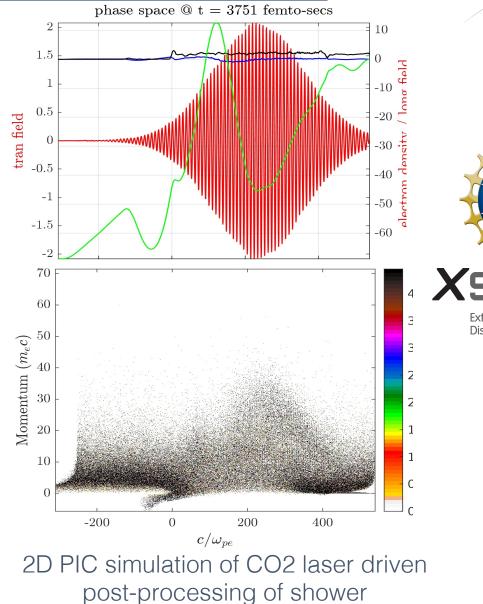


orders-of-magnitude roll-off at high-energies

simulations of ATF-beam driven positron-electron showers



- Parabola with hole for re-directing the electron beam
- 3" diam parabolas with 5 mm hole available at ATF
- ATF has different parabolas with F varying between 100-250 mm. They are between 3-4" dia. But only 3" dia have holes
- Axicon pair telescope to split, expand and combine the laser beam
- Axicon pair is already in-stock at ATF
- The axicon pair cannot be used for our full power

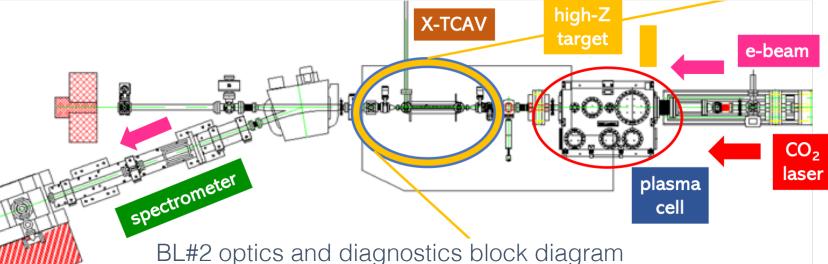

Sim of CO₂ laser driven plasma processing

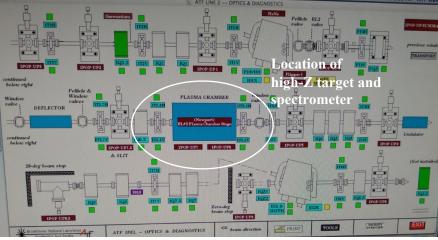
- 2D PIC EPOCH simulations CO2 laser-driven post-processing of ATF beam-driven showers
- Shower properties determined using GEANT4
- Initialize a long shower ~ 2.5 ps
- CO₂ Laser-driven structures can trap and slowdown positrons

Plasma parameters	$1\mathrm{TW}$	$2\mathrm{TW}$
Density	$2 \times 10^{17} \text{ cm}^{-3}$	
Critical Power (P_c)	$1.1 \mathrm{TW}$	$1.1 \ \mathrm{TW}$
P/P_c	0.88	1.87
matched- w_0	$32~\mu{ m m}$	$36~\mu{ m m}$
a_0	1.52	1.95
λ_eta	$1.45 \mathrm{~mm}$	$1.45 \mathrm{~mm}$
$Z_{\rm R} \ ({\rm matched} - w_0)$	$0.32 \mathrm{~mm}$	$0.4 \mathrm{mm}$
σ_r/w_0	0.9	0.8

Strongly Mismatched Regime of Nonlinear Laser–Plasma Acceleration: Optimization of Laser-to-Energetic Particle Efficiency 10.1109/TPS.2019.2914896

Jan 21, 2022, 24th Accelerator Test Facility (ATF) Users' Meeting


10



experimental layout

- initially use BL# 2
- vacuum chamber on BL#2 space for our spectrometers
- however, need CO₂ laser on BL#2
- can we get Ti:Sap or Nd:YAG on BL#2 ?

BL#2 optics and diagnostics design to show the location of our experiment

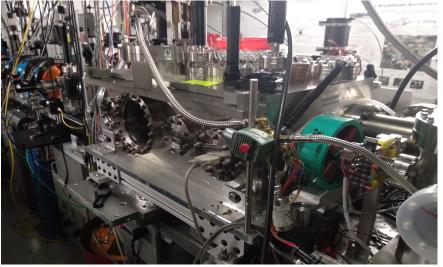
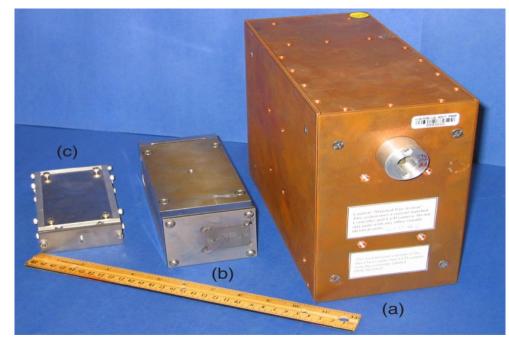
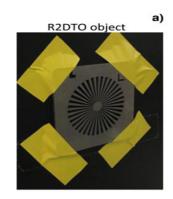
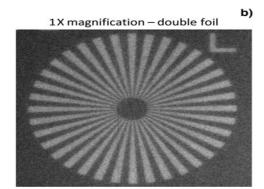



Photo of beamline # 2 setup


our diagnostics



LLNL positron spectrometer

Rev. Sci. Instrum. 79, 10E533 (2008)

LANL gamma-ray diagnostics

Laser and Particle Beams 36, 502-506. (2018)

Yr. 1 – *ONLY electron beam* **characterization of positron-electron jet** production in solid target, over the sub-ps electron beam parameter-space (spot-size, charge, current) and its interaction with laser-ionized plasma

Yr. 2 – **demonstration of spatio-temporal overlap** between a high-power CO₂ laser pulse within the plasma-cell along with positron-electron jets

Yr. 3 – demonstration of **tuning of the characteristics of positrons** by scanning over electron beam, CO2 laser and plasma properties.

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	60 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	1nC
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	0.1 - 1ps (10fs will be highly desirable when available ?)
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	30-50 μm Can we get the PMQ triplet setup used earlier at BNL ?
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

University of Colorado Denver

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
	Peak Power	GW	~3		3 GW
	Pulse Mode		Single		
	Pulse Length	ps	2		2 ps
	Pulse Energy	mJ	6		6 mJ
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	0.5 – 2 TW
	Pulse Mode		Single		
	Pulse Length	ps	2		2 ps
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	1-5 J
	M ²		~2		
	Repetition Rate	Hz	0.05		
	Polarization		Linear	Adjustable linear polarization along with circular	linear
Jan 21, 2022, 24 th Accelerator Test Facility (ATF) Users' Meeting 15					

University of Colorado Special Equipment Requirements and Hazards BR

BROOKHAVEN NATIONAL LABORATORY

• Electron Beam

• plasma capillary discharge system

Experimental Time Request

CY2021 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only	24	80
Laser* Only (in Laser Rooms)		
Laser(s)* + Electron Beam		

Time Estimate for Remaining Years of Experiment (including CY2021)

Capability	Setup Hours	Running Hours
Electron Beam Only	Good for year 1 (but pre-amp CO2 level would be very useful)	
Laser* Only (in FEL Room)		
Laser(s)* + Electron Beam	80	300

* Laser = Near-IR or LWIR (CO₂) Laser