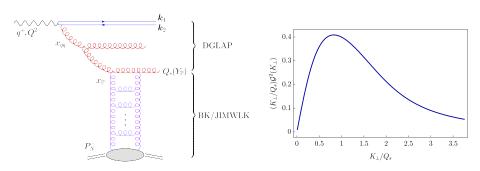
Probing gluon saturation via diffractive jet production at the EIC

Edmond Jancu

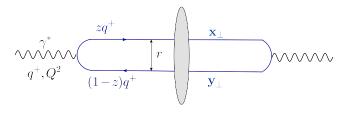
IPhT, Université Paris-Saclay

with A.H. Mueller and D.N. Triantafyllopoulos, arXiv:2112.06353



How to measure gluon saturation at the EIC?

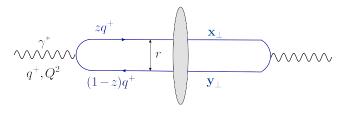
 \bullet Total γ^*A cross-section at small $x_{\mbox{\tiny Bj}} \equiv \frac{Q^2}{2P_N \cdot q}$ and not too high Q^2



- \bullet Excellent saturation/CGC fits at HERA: $x_{\rm Bj} \leq 10^{-2}$, $Q^2 \leq 50~{\rm GeV^2}$
 - the pioneers: Golec-Biernat and Wüsthoff, 1999
 - Ducloué, E.I., Soyez and Triantafyllopoulos, 2019
 - Beuf, Hänninen, Lappi, Mäntysaari, 2020 ...
 (BK/JIMWLK, NLO effects, resummations) [talks by Anna, Tuomas]
- \bullet However, gluon saturation only marginally probed: $Q_s^2 \sim 1~{\rm GeV^2}$
 - limited region in phase-space, non-perturbative contamination

How to measure gluon saturation at the EIC?

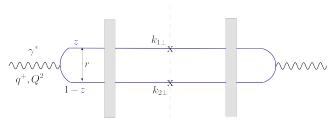
 \bullet Total γ^*A cross-section at small $x_{\mbox{\tiny Bj}} \equiv \frac{Q^2}{2P_N \cdot q}$ and not too high Q^2



- \bullet Excellent saturation/CGC fits at HERA: $x_{\mbox{\tiny Bj}} \leq 10^{-2}$, $Q^2 \leq 50 \mbox{ GeV}^2$
 - the pioneers: Golec-Biernat and Wüsthoff, 1999
 - Ducloué, E.I., Soyez and Triantafyllopoulos, 2019
 - Beuf, Hänninen, Lappi, Mäntysaari, 2020 ...
 (BK/JIMWLK, NLO effects, resummations) [talks by Anna, Tuomas]
- ullet Can one measure saturation in hard DIS ? $(Q^2\gg Q_s^2)$
- Consider more exclusive processes: correlations in particle production

Inclusive dijets in the correlation limit

ullet The $qar{q}$ fluctuation is put on shell by inelastic scattering off the nucleus

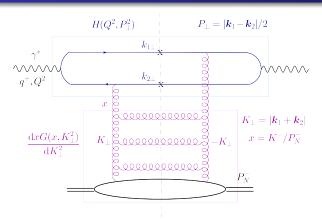


Correlation limit: 2 hard jets which are nearly back-to-back

$$k_{1\perp} \simeq k_{2\perp} \sim Q \gg K_{\perp} \equiv |\boldsymbol{k}_{1\perp} + \boldsymbol{k}_{2\perp}| \sim Q_s$$

- ullet scattering is weak, by color transparency: small $qar{q}$ dipole: $r\sim 1/k_{i\perp}$
- momentum imbalance fixed by scattering off the saturated gluons
- Measure saturation from azimuthal correlations! (Marquet, 2007)
- TMD factorisation: hard impact factor × unintegrated gluon distribution (Dominguez, Marquet, Xiao and Yuan, 2011) [talk by Feng]

TMD factorisation for inclusive dijets

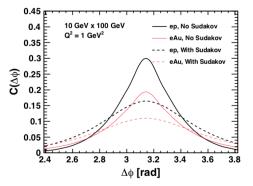


- \bullet For $Q^2\gg Q_s^2,$ one typically has $Q_s^2\ll K_\perp^2\ll Q^2;$ saturation still marginal
 - \bullet the UGD decreases only like $1/K_{\perp}^2$ when $K_{\perp}\gg Q_s$
- Sudakov effect $\sim \alpha_s \ln^2(Q^2/Q_s^2)$ (Mueller, Xiao and Yuan, 2013)
 - strong additional broadening due to final-state radiation

Azimuthal correlations in dijets

(Zheng, Aschenauer, Lee, and Xiao, arXiv:1403.2413)

• Large competing effect due to final-state radiation $(Q \gg Q_s)$: "Sudakov"

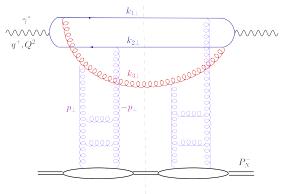


Metz, Zhou, 1105.1991; Dumitru, Lappi, Skokov, 1508.04438 Marquet, Petreska, Roiesnel, 1608.02577;

Dumitru, Skokov, Ullrich, 1809.02615; Mäntysaari et al, arXiv:1912:05586 ...

2+1 jets in hard DIS diffraction

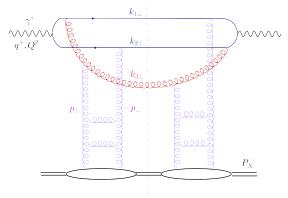
ullet 2 hard quark-antiquark jets + 1 softer gluon jet: $k_{1\perp},\,k_{2\perp}\sim Q$ $\gg k_{3\perp}$



- Coherent diffraction: elastic scattering, the target is not broken
 - colorless exchange (2-gluon ladder): "Pomeron"
 - ullet rapidity gap $Y_{\mathbb{P}}$ between the 3 jets and the nucleus
 - ullet the momentum transfer is negligible: $|m{k}_1 + m{k}_2 + m{k}_3| \sim \Lambda$

2+1 jets in hard DIS diffraction

• Hard dijet imbalance controlled by the gluon jet: $K_{\perp} \equiv |{m k}_1 + {m k}_2| \simeq k_{3\perp}$

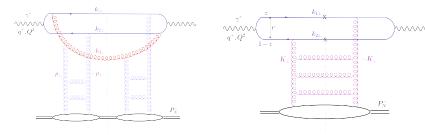


- Coherent diffraction: elastic scattering, the target is not broken
 - colorless exchange (2-gluon ladder): "Pomeron"
 - ullet rapidity gap $Y_{\mathbb{P}}$ between the 3 jets and the nucleus
 - ullet the momentum transfer is negligible: $|m{k}_1 + m{k}_2 + m{k}_3| \sim \Lambda$

Why is this interesting?

Elastic scattering is more sensitive to gluon saturation [talk by Heikki]

$$\sigma_{el} \propto |\mathcal{A}_{el}|^2 \longleftrightarrow \sigma_{tot} \propto 2 \operatorname{Im} \mathcal{A}_{el}$$

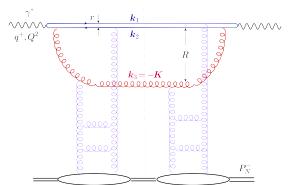


- ullet At weak scattering $|{\cal A}_{el}|\ll 1$, elastic scattering is strongly suppressed
- ullet Diffraction is controlled by strong scattering $|{\cal A}_{el}|\sim 1$: Black Disk Limit
- ullet 2+1 jets: elastic scattering becomes strong when $k_{3\perp} \sim Q_s(Y_{\mathbb P})$
 - ullet the gluon jet redistributes colour over a large transverse size $\sim 1/k_{3\perp}$

The gluon dipole

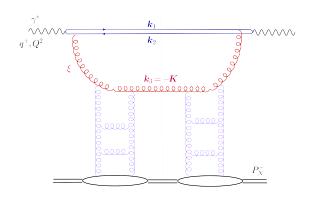
- ullet The typical "hard dijet" events truly are 2+1 jets with $k_{3\perp} \sim Q_s(Y_{\mathbb P})$
 - \bullet dominate over exclusive dijets when $Q^2 \gg Q_s^2$
- A simpler, effective, picture for the colour flow (Wüsthoff, 97)

$$R \sim 1/k_{3\perp} \sim 1/Q_s \ \gg \ r \sim 1/P_{\perp} \sim 1/Q \ \Longrightarrow \ {
m effective} \ gg \ {
m dipole}$$



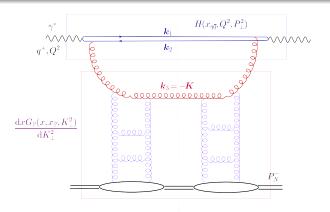
• 2+1 diffractive jets: an opportunity to measure the gluon dipole

TMD-like factorisation for diffractive dijets



- Gluon formation time $au_3=rac{2k_3^+}{k_3^2+}\lesssim ext{ photon coherence time } au_q=rac{2q^+}{Q^2}$
- Soft gluon: $\xi \equiv \frac{k_3^+}{q^+} \lesssim \frac{k_{3\perp}^2}{Q^2} \ll 1 \implies \text{eikonal approx} \implies \text{factorisation}$

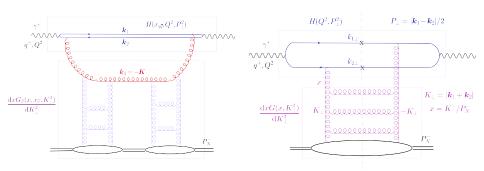
TMD-like factorisation for diffractive dijets



- Gluon formation time $au_3=rac{2k_3^+}{k_3^2}\lesssim ext{ photon coherence time } au_q=rac{2q^+}{Q^2}$
- Soft gluon: $\xi \equiv \frac{k_3^+}{q^+} \lesssim \frac{k_{3\perp}^2}{Q^2} \ll 1 \implies \text{eikonal approx} \implies \text{factorisation}$
- Trijet cross-section = Hard factor × UGD of the Pomeron

The hard impact factor

• Exactly the same for diffractive and inclusive dijets in the correlation limit



- \bullet the decay of the virtual photon $\gamma^* \to q \bar q$
- ullet the scattering between a small qar q pair and a gluon from the target
- What is different though is the actual source of this gluon
 - Pomeron (evolved to $x_{\mathbb{P}}$) vs. Hadronic target (evolved to $x_{q\bar{q}}$)

Rapidity scales

- ullet $x_{\mathbb{P}}$: fraction of target longitudinal momentum P_N^- carried by the Pomeron
- ullet $x_{qar{q}}\sim x_{
 m Bj}$: the corresponding quantity for the exchanged gluon
 - \bullet the exchanged gluon has $k^+=\xi q^+$ and $k^-=x_{q\bar q}P_N^-$
- $x \equiv x_{q\bar{q}}/x_{\mathbb{P}}$: splitting fraction of the exchanged gluon w.r.t. the Pomeron

$$\begin{cases} v_1 & k_1 \\ v_2 & k_2 \\ \xi, x_{qq} & k_3 \\ x_{\mathbb{P}} & k_3 \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ &$$

 \bullet The eikonal approximation applies when $M^2_{q\bar{q}g}\gg M^2_{q\bar{q}},$ or $x\ll 1$

The Pomeron unintegrated gluon distribution (1)

$$\frac{\mathrm{d} x G_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp}^2)}{\mathrm{d}^2 \mathbf{K} \mathrm{d}^2 \mathbf{b}} = \frac{N_c^2 - 1}{8\pi^4} \left[\mathcal{G}(K_{\perp}, Y_{\mathbb{P}}) \right]^2$$

ullet $\mathcal{G}(K_{\perp},Y_{\mathbb{P}})$: a Fourier transform of the gluon dipole scattering amplitude

$$\mathcal{G}(K_{\perp}, Y_{\mathbb{P}}) = 2 \int_0^{\infty} \frac{\mathrm{d}R}{R} \, \mathrm{J}_2(K_{\perp}R) \mathcal{T}_g(R, Y_{\mathbb{P}})$$

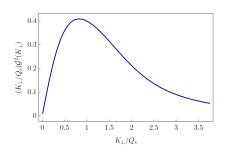
 \bullet integral controlled by dipole sizes $R\sim 1/K_{\perp}$

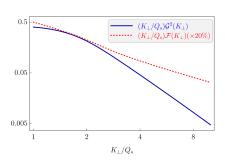
$$\mathcal{T}_g(R) \simeq \begin{cases} r^2 Q_s^2, & R \ll 1/Q_s \\ 1, & R \gg 1/Q_s \end{cases} \implies \mathcal{G}(K_\perp) \simeq \begin{cases} Q_s^2/K_\perp^2, & K_\perp \gg Q_s \\ 1, & K_\perp \ll Q_s \end{cases}$$

- \bullet saturation scale is harder for a gluon dipole: $Q_s^2(gg)=(9/4)Q_s^2(q\bar{q})$
- ullet Similar to the Weiszäcker-Williams gluon TMD from inclusive dijets ... except that the diffractive cross-section involves the square of $\mathcal{G}(K_\perp)$

The Pomeron unintegrated gluon distribution (2)

- At large $K_{\perp} \gg Q_s$, $\mathcal{G}^2(K_{\perp}) \propto 1/K_{\perp}^4$ decreases very fast.
 - ullet the bulk of the diffractive cross-section lies at momenta $K_{\perp} \lesssim Q_s(Y_{\mathbb{P}})$

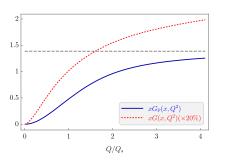


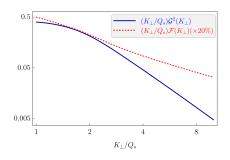


- Diffractive trijets are more sensitive to saturation than inclusive dijets
 - no need to explicitly measure (or even see) the third, softer, jet
 - study the distribution of the hard dijets in their momentum imbalance K_{\perp} , for various values of the rapidity gap $\implies Q_s(Y_{\mathbb{P}})$

The Pomeron unintegrated gluon distribution (2)

- At large $K_{\perp} \gg Q_s$, $\mathcal{G}^2(K_{\perp}) \propto 1/K_{\perp}^4$ decreases very fast.
 - ullet the bulk of the diffractive cross-section lies at momenta $K_{\perp} \lesssim Q_s(Y_{\mathbb{P}})$

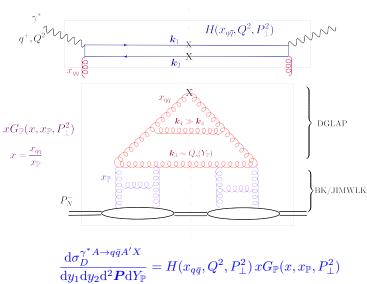




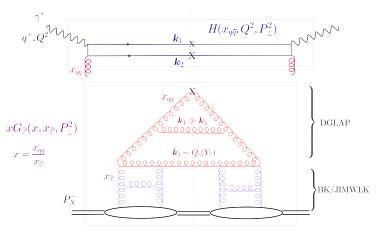
- ullet This sensitivity persists after integrating out the K_\perp -distribution.
 - ullet the integrated gluon distribution of the Pomeron $xG_{\mathbb{P}}(x,x_{\mathbb{P}},Q^2)$

$$xG_{\mathbb{P}}(x,x_{\mathbb{P}},Q^2) \propto Q_s^2(Y_{\mathbb{P}})$$
 vs. $xG(x,Q^2) \propto Q_0^2 \ln rac{Q^2}{Q_0^2}$

ullet Measure the dijet distribution integrated over the imbalance K_{\perp}

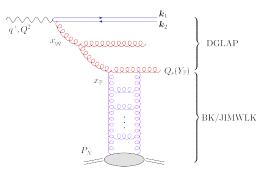


ullet Measure the dijet distribution integrated over the imbalance K_{\perp}



- eliminates the Sudakov effect $\sim \alpha_s \ln^2 \frac{P_\perp^2}{K^2}$ (final state radiation)
- ullet Sudakov double logs replaced by the DGLAP single logs $\sim lpha_s \ln rac{P_\perp^2}{K_\perp^2}$

Gluon saturation provides the initial condition for the DGLAP evolution

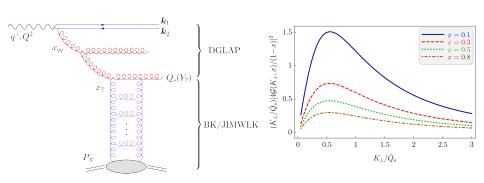


- $xG_{\mathbb{P}}(x,x_{\mathbb{P}},Q^2)$ for $Q^2 \sim Q_s^2(Y_{\mathbb{P}})$ and for any $x \leq 1$
- $x \equiv x_{q\bar{q}}/x_{\mathbb{P}}$: splitting fraction w.r.t. the Pomeron
- ullet $x\sim 1$ is beyond eikonal approx.
- exploit black disk limit

$$xG_{\mathbb{P}}(x, x_{\mathbb{P}}, Q^2) = S_{\perp}(1-x)^2 \frac{N_c^2 - 1}{(2\pi)^3} \kappa Q_s^2(Y_{\mathbb{P}})$$

- A unique situation where DGLAP and BK/JIMWLK can be interconnected
- ullet Diffraction matches the two evolutions at a fixed transverse scale $Q^2_s(Y_{\mathbb P})$

• Gluon saturation provides the initial condition for the DGLAP evolution



$$xG_{\mathbb{P}}(x, x_{\mathbb{P}}, Q^2) = S_{\perp}(1-x)^2 \frac{N_c^2 - 1}{(2\pi)^3} \kappa Q_s^2(Y_{\mathbb{P}})$$

- A unique situation where DGLAP and BK/JIMWLK can be interconnected
- \bullet Diffraction matches the two evolutions at a fixed transverse scale $Q^2_s(Y_{\mathbb P})$

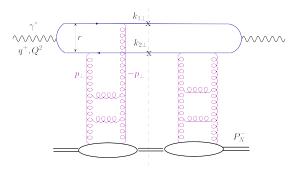
Conclusions

- A new, hard, process to study gluon saturation via final-state correlations
 - yet another avatar of "dijet production in the correlation limit"
- Especially sensitive to saturation since relying on elastic scattering
- Additional, comparatively soft, radiation plays an essential role:
 - use the 3rd jet to "open up the colour space" (Bowen, via email)
 - large-size (R), effective, gluon-gluon dipole
 - ullet use elastic scattering as a filter to select $R\sim 1/Q_s$
- ullet The actual measurement of the gg dipole would be a bonus!
- Saturation remains important if the dijet correlation is not measured
 - initial condition for DGLAP evolution emerging from first principles
- ullet Similar processes might be interesting in ultraperipheral pA and AA

THANK YOU & STAY HEALTHY!

Back-up: Exclusive hard dijet production

- ullet Elastic scattering off a small quark-antiquark dipole: $r\sim 1/P_{\perp}\ll 1/Q_s(Y)$
 - \bullet scattering is weak by colour transparency: $\mathcal{T}(r,Y) \simeq r^2 Q_s^2(Y) \ll 1$
 - ullet cross-section: $\mathcal{T}^2(r,Y) \propto r^4$: strongly suppressed at high P^2_\perp



$$\sigma_{
m el} \propto rac{1}{P_{\perp}^6} \left[rac{lpha_s \, x G(x, P_{\perp}^2)}{S_{\perp}}
ight]^2 \;\; \longleftrightarrow \;\; \sigma_{
m diff} \propto rac{lpha_s}{P_{\perp}^4} \, Q_s^2(Y_{\mathbb P})$$