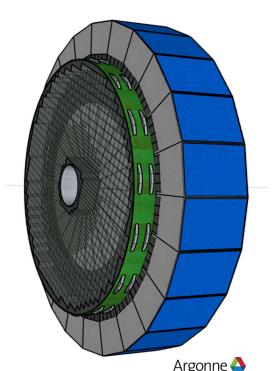
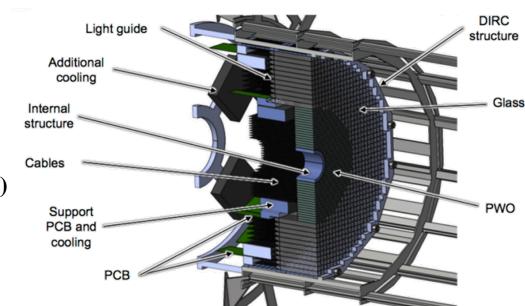

CALORIMETER WG SUMMARY TO THE BIWEEKLY MEETING

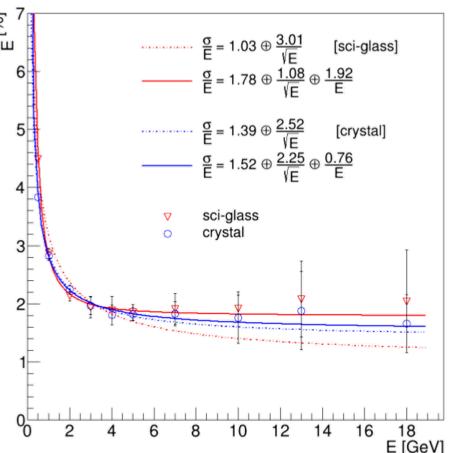
Paul E Reimer 14 October 2021



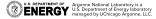
CALORIMETER WG: ENDCAPS & BHCAL


- P/N Hcal
 - Design has not changed
 - NHCal is still an orphan detector
- PECal
 - Design has not changed

nECAL

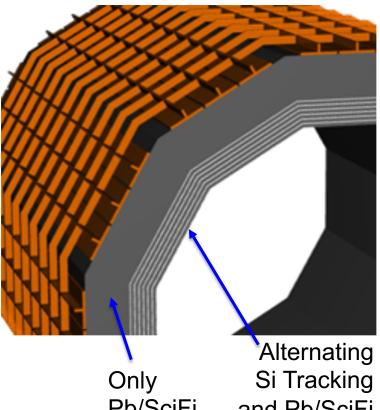

The nECal is a high-resolution electromagnetic calorimeter designed for precision measurements of the energy of scattered electrons and final-state photons in the region $-3.5 < \eta < -1.0$. The requirement on high energy resolution is driven by inclusive DIS where precise measurement of scattered electrons is critical to determine the event kinematics.

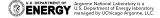
- □ The inner part of nECal: 1976 $20 \times 20 \times 200 \text{ mm}^3 \text{ PbWO4 (PWO)}$ **crystals** (≈ 22X₀)
- Outer part of nECal: 1104 40×40×
 550 mm³ Scintillating Glass (SciGlass)
 blocks (≈20X₀)


nECAL

- A detailed design of nECal is in progress.
 The EEEMCAL team has begun to organize activities into mechanical design, scintillator, readout, and software/simulation among the collaborating institutions. Pre-design activities, in particular for the support structure have started in 2021.
- EOI for the Electron Endcap Electromagnetic Calorimeter (EEEmCal). 2021.
 url:https://indico.bnl.gov/event/8552/contributions/43186/

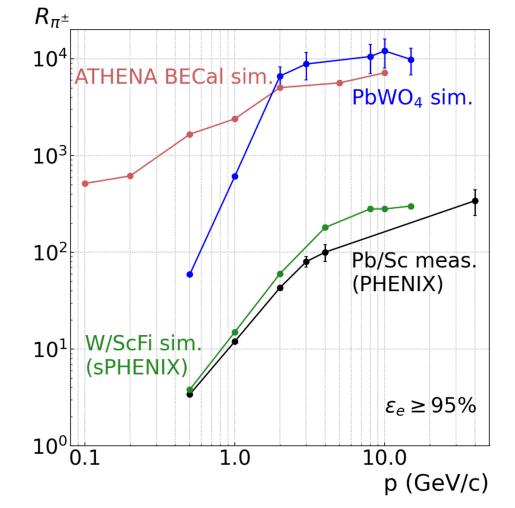
BHCAL


- Still an orphan detector
- ATHENA magnet (about 2 interaction lengths) precludes good
- 2 interaction length (tail-catcher) to contain about 95% of hadronic showers.
- 5 layers steel and scintillation sandwich (4 cm/ 5 mm layer structure).
- Re-use existing scintillation mega- tiles from STAR bECal
- We can make up for some of this deficiency with optimized BECal,
 - but BECal must still perform its Ecal functions



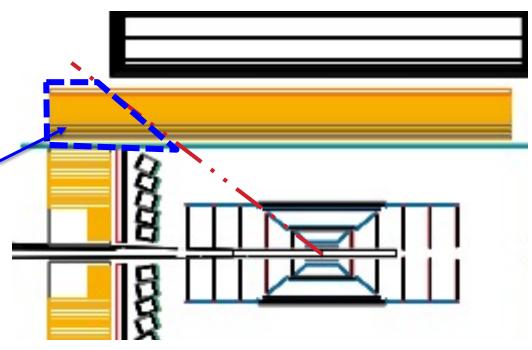
BECAL CONFIGURATION

- Alternating sections of Pb/SciFi and Si Tracking Calorimeter
- Nine layers of Si Tracking in the inner half (roughly) of the BECal
 - Why 9? See C. Peng and M. Zurek at https://indico.bnl.gov/event/13531/contributions/55893/attachments/3 7653/62025/BECAL pion rejection 1011.pdf
- Si layers are
 - -0.155 cm of Si + 1 cm of air = 1.155 cm
- Pb/SciFi layers are
 - 13 layers of fibers
 - 13*1.22 mm = 1.586 cm layers of Pb/SciFi


and Pb/SciFi

BARREL ECAL PERFORMANCE

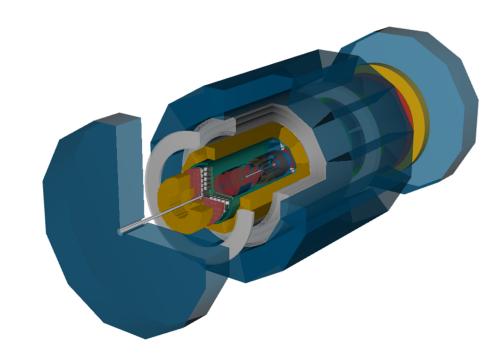
- π /e separation
 - comparable to PbWO₄
 - Caveat: Hadronic showers at this energy are poorly modeled by GEANT4
- γ , e energy resolution
 - Design from GlueX, $\frac{5\%}{\sqrt{F}} + 1\%$
 - Important for DVCS measurements
- Additional help for barrel hadron energy measurement
 - Needs group to study this
 - Will affect γ -resolution



Cost

 Remember Barrel ECal is covering much of the electron endcap

This volume is not SciGlass


- Rough cost
 - fixed costs + \$1.1M/layer
 - Cost directly scales with area
 - Radius is important to cost \$1M/10 cm radial.

SUMMARY

- All calorimeters are well defined
 - Optimization continues
- BHCal and NHCal
 - being shepherded through,
 - but have no strong advocate

