Leading Hadronic Contribution to the Muon g-2 with Twisted-Mass Quarks

BNL-HET & RBRC
Joint Workshop
"DWQ@25"

13th - 17th December

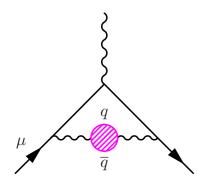
In collaboration with:

V. Lubicz, G. Martinelli, F. Sanfilippo and S. Simula

<u>ArXiv:1707.03019</u>; <u>ArXiv:1808.00887</u>; <u>ArXiv:1901.10462</u>;

ArXiv:1910.03874; ArXiv:2003.12086; ArXiv:2111.15329

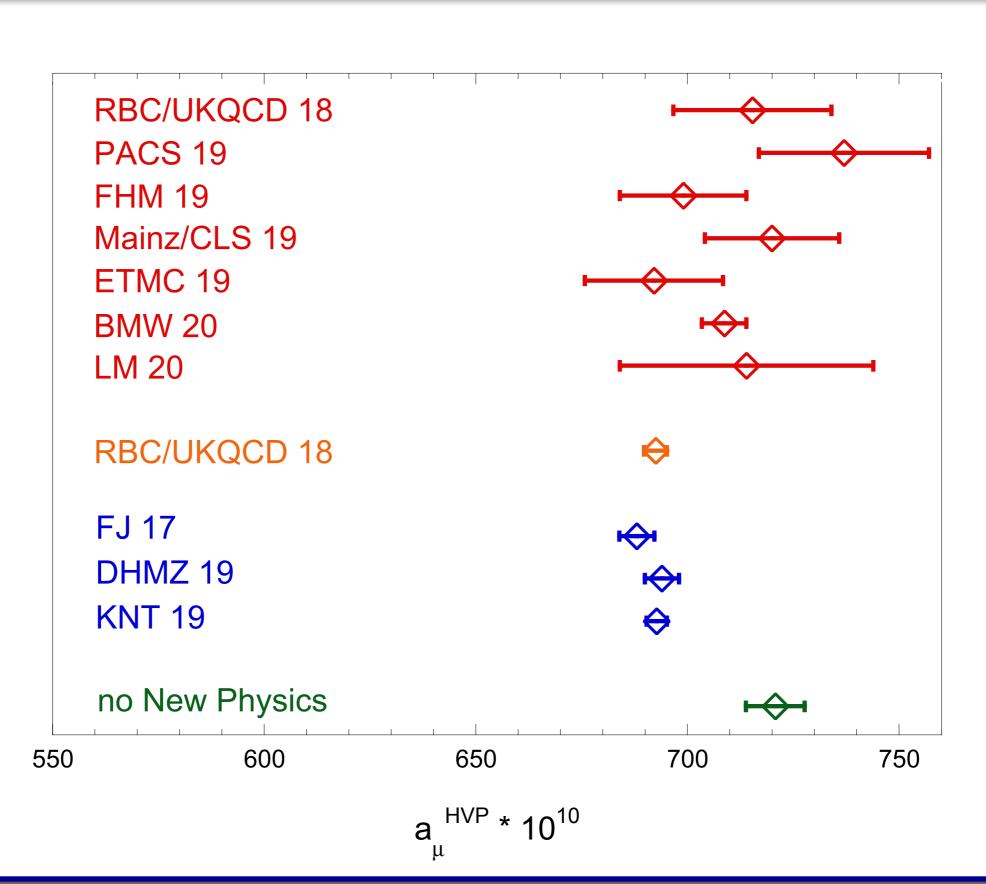
Hadronic Vacuum Polarization



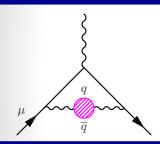
lattice data 100%

lattice + e⁺e⁻ ~ 30% + 70%

e+e- data 100%



Muon anomalous magnetic moment from ETMC



HVP from LQCD

$$\Pi_{\mu\nu}(Q) = \int d^4x \ e^{iQ\cdot x} \left\langle J_{\mu}(x)J_{\nu}(0)\right\rangle = \left[\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu}\right] \Pi\left(Q^2\right)$$

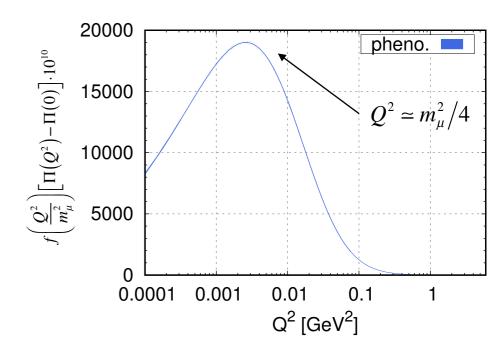
$$a_{\ell}^{\text{HVP}} = 4\alpha_{em}^2 \int_0^{\infty} dQ^2 \frac{1}{m_{\ell}^2} f\left(\frac{Q^2}{m_{\ell}^2}\right) \left[\Pi\left(Q^2\right) - \Pi\left(0\right)\right]$$

B. E. Lautrup et al., 1972; T. Blum, 2002

Time-Momentum Representation

$$a_{\ell}^{\text{HVP}} = 4\alpha_{em}^{2} \int_{0}^{\infty} dt \ \widetilde{f}_{\ell}(t) \ V(t)$$

D. Bernecker and H. B. Meyer, 2011



F. Jegerlehner, "alphaQEDc17"

$$V(t) = \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

$$a_{\ell}^{\text{HVP}} = \sum_{f=u,d,s,c} 4\alpha_{em}^{2} \left\{ \sum_{t=0}^{T_{data}} \widetilde{f}_{\ell}(t) V^{f}(t) + \sum_{t=T_{data}+a}^{\infty} \widetilde{f}_{\ell}(t) \frac{G_{V}^{f}}{2M_{V}^{f}} e^{-M_{V}^{f}t} \right\} t \leq T_{data} < T/2 \text{ (avoid bw signals)} t > T_{data} > t_{min} \text{ (ground-state dom.)}$$

quark-connected terms only

lattice data local vector currents

analytic representation

Details of the lattice simulation

We have used the gauge field configurations generated by ETMC, European Twisted Mass Collaboration, in the pure isosymmetric QCD theory with Nf=2+1+1 dynamical quarks

(ensemble	β	V/a^4	$a\mu_{ud}$	$a\mu_{\sigma}$	$a\mu_{\delta}$	N_{cf}	$a\mu_{\mathcal{S}}$	M_{π}	M_K
									(MeV)	(MeV)
	A40.40	1.90	$40^3 \cdot 80$	0.0040	0.15	0.19	100	0.02363	317(12)	576(22)
ľ	A30.32		$32^3 \cdot 64$	0.0030			150		275(10)	568(22)
	A40.32			0.0040			100		316(12)	578(22)
ľ	A50.32			0.0050			150		350(13)	586(22)
	A40.24		$24^3 \cdot 48$	0.0040			150		322(13)	582(23)
	A60.24			0.0060			150		386(15)	599(23)
	A80.24			0.0080			150		442(17)	618(14)
ı	A100.24			0.0100			150		495(19)	639(24)
	A40.20		$20^3 \cdot 48$	0.0040			150		330(13)	586(23)
	B25.32	1.95	$32^3 \cdot 64$	0.0025	0.135	0.170	150	0.02094	259 (9)	546(19)
ı	B35.32			0.0035			150		302(10)	555(19)
	B55.32			0.0055			150		375(13)	578(20)
	B75.32			0.0075			80		436(15)	599(21)
	B85.24		$24^3 \cdot 48$	0.0085			150		468(16)	613(21)
	D15.48	2.10	$48^3 \cdot 96$	0.0015	0.1200	0.1385	100	0.01612	223 (6)	529(14)
	D20.48			0.0020			100		256 (7)	535(14)
	D30.48			0.0030			100		312 (8)	550(14)
1										

- Gluon action: Iwasaki

- Quark action: twisted mass at maximal twist (automatically O(a) improved)

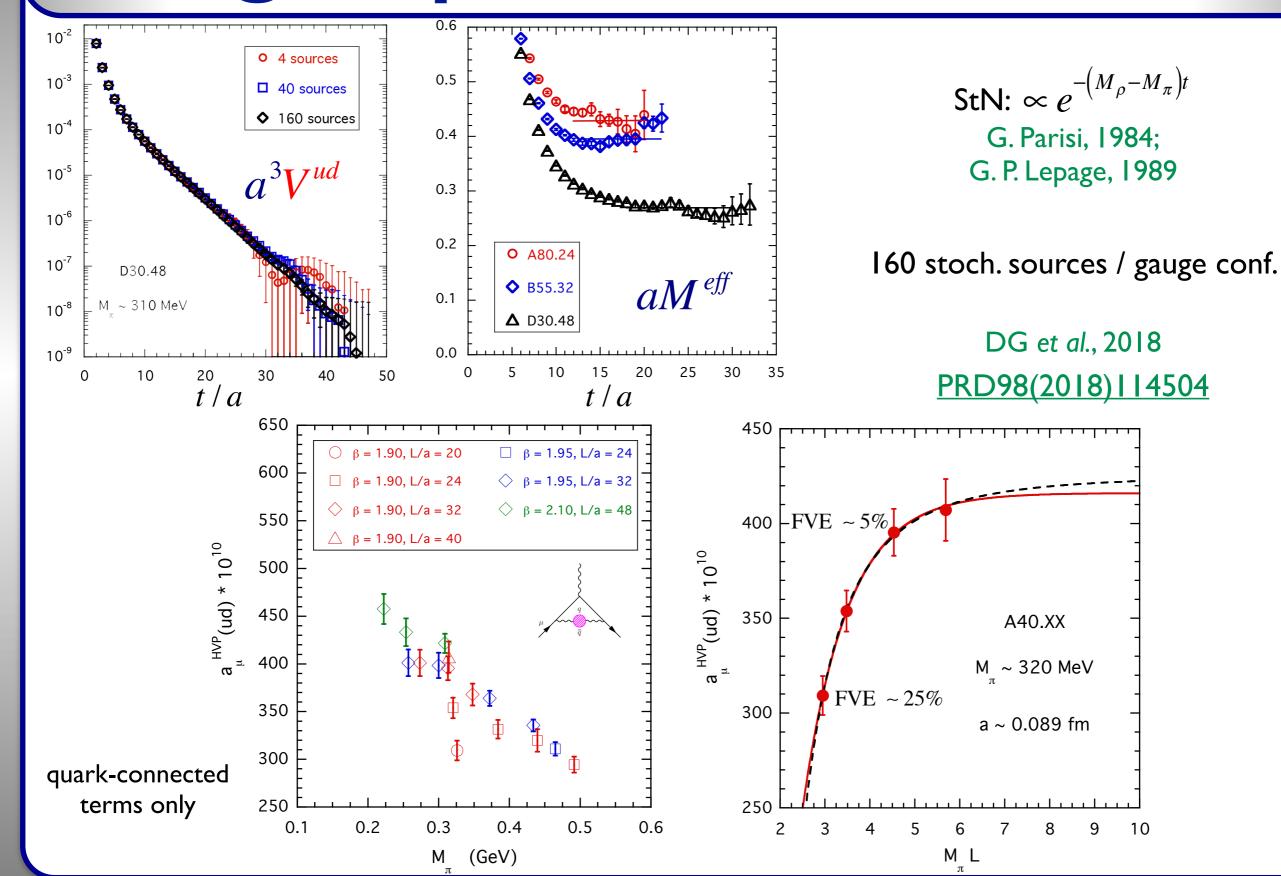
OS for s and c valence quarks

Pion masses in the range 220 - 490 MeV

4 volumes @ $M_{\pi} \simeq 320$ MeV and $a \simeq 0.09$ fm

$$M_{\pi}L \simeq 3.0 \div 5.8$$

Light quark contribution



6

Correlator representation

$$V^{ud}(t) = V_{dual}(t) + V_{\pi\pi}(t)$$

low and intermediate time distances

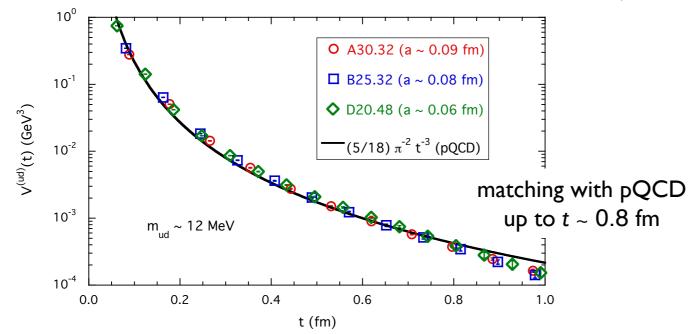
$$V_{dual}(t) = \frac{1}{24\pi^2} \int_{s_{dual}}^{\infty} ds \sqrt{s} \ e^{-\sqrt{s}t} R^{pQCD}(s)$$

$$s_{dual} = \left(\frac{M_{\rho} + E_{dual}}{s_{dual}} \right)^{2} \qquad R_{dual} = 1 + O\left(\frac{m_{ud}^{4}}{s_{dual}^{2}} \right) + O(\alpha_{s}) + O(\alpha^{2})$$

$$V_{dual}(t) = \frac{5}{18\pi^2} \frac{R_{dual}}{t^3} e^{-(M_{\rho} + E_{dual})t} \left[1 + (M_{\rho} + E_{dual})t + \frac{1}{2} (M_{\rho} + E_{dual})^2 t^2 \right]$$

quark-hadron duality à la SVZ

SVZ, 1979



long time distances

$$V_{\pi\pi}\left(t\right) = \sum_{n} V_{n} \left|A_{n}\right|^{2} e^{-\omega_{n}t}$$

$$M. \text{ Lüscher 1991}$$

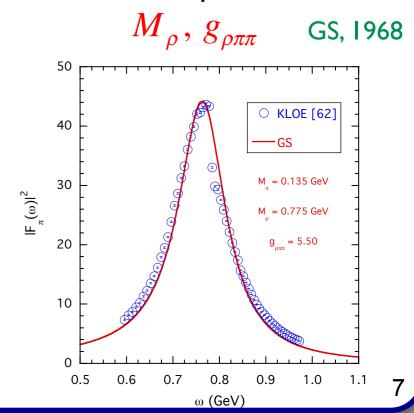
$$\omega_{n} = 2\sqrt{M_{\pi}^{2} + k_{n}^{2}}$$

$$L. \text{ Lellouch and M. Lüscher, 2001}$$

$$H.B. \text{ Meyer, 2011}$$

$$\left|A_{n}\right|^{2} \longrightarrow \left|F_{\pi}\left(\omega_{n}\right)\right|^{2}$$

Gounaris-Sakurai parameterization



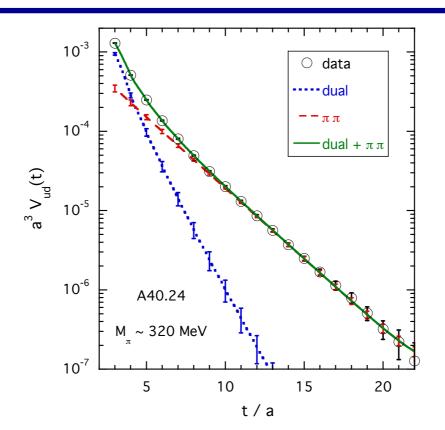
Subtraction of FVEs

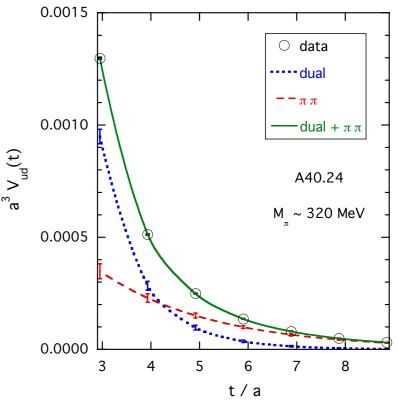
Accurate reproduction for all the ETMC ensembles

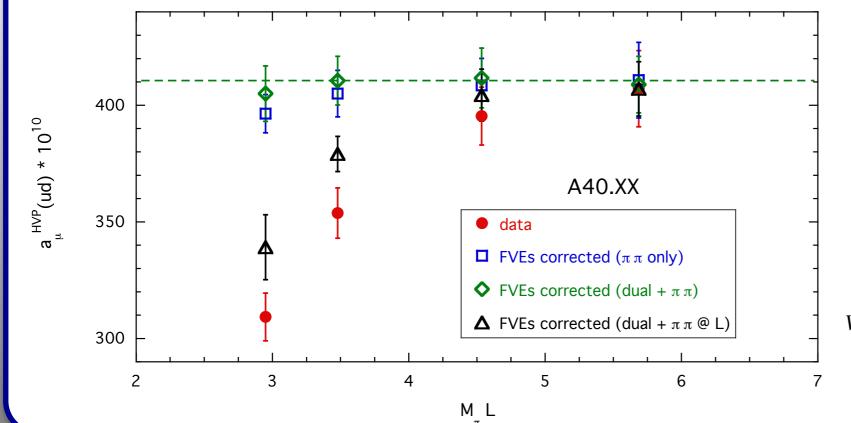
$$t \ge 0.2 \text{ fm}$$

$$R_{dual}, \frac{E_{dual}}{M_{\pi}}, g_{\rho\pi\pi}, \frac{M_{\rho}}{M_{\pi}}$$

 π - π : 4 energy levels







$$a_{\mu}^{\mathrm{HVP}}(\infty) = a_{\mu}^{\mathrm{HVP}}(L) + \Delta_{\mathrm{FVE}} a_{\mu}^{\mathrm{HVP}}$$

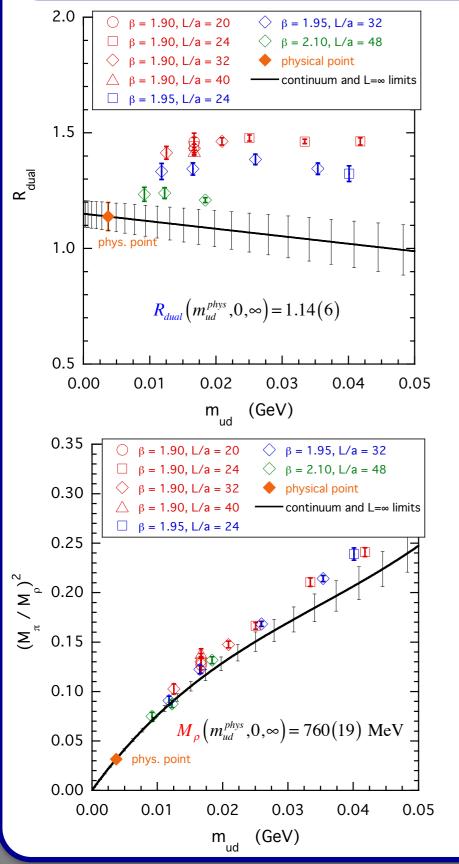
infinite-volume limit

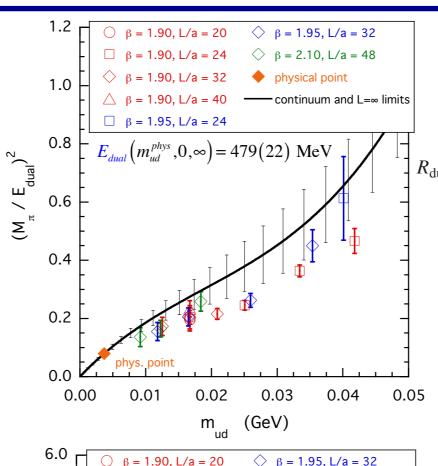
$$V_{dual}^{\infty}(t) \colon R_{dual}^{\infty} M_{\rho}^{\infty} E_{dual}^{\infty}$$

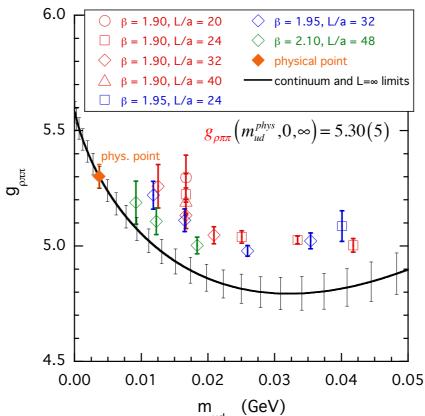
$$V_{\pi\pi}^{\infty}(t) = \frac{1}{48\pi^2} \int_{2M_{\pi}^{\infty}}^{\infty} d\omega \, \omega^2 \left[1 - \frac{\left(2M_{\pi}^{\infty}\right)^2}{\omega^2} \right]^{3/2} \left| F_{\pi}^{\infty}(\omega) \right|^2 e^{-\omega t}$$

H. B. Meyer, 2011

Parameters







good control of FVEs

$$R_{\text{dual}}(m_{ud}, a^2, L) = R_0[1 + R_1 m_{ud} + R_a a^2 + R_{am} a^2 m_{ud}]$$

$$\times \left[1 + R_{\text{FVE}} \xi \frac{e^{-ML}}{(ML)^{3/2}}\right]$$

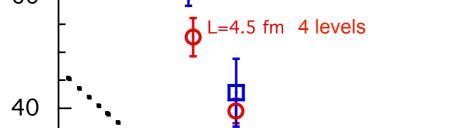
$$\frac{M_{\pi}^{2}}{E_{\text{dual}}^{2}}(m_{ud}, a^{2}, L) = E_{0}m_{ud}[1 + E_{1}m_{ud} + \xi \log(\xi) + E_{2}m_{ud}^{2} + E_{a}a^{2}]$$

$$\frac{M_{\pi}^{2}}{M_{\rho}^{2}}(m_{ud}, a^{2}, L) = V_{0}m_{ud}[1 + V_{1}m_{ud} + \xi \log(\xi) + V_{2}m_{ud}^{2} + V_{a}a^{2}]$$

$$\begin{split} g_{\rho\pi\pi}(m_{ud}, a^2, L) &= g_0[1 + g_1 m_{ud} + 2\xi \log(\xi) + g_a a^2] \\ &\times \left[1 + g_{\text{FVE}} \xi \frac{e^{-ML}}{(ML)^{3/2}}\right] \end{split}$$

$$\begin{split} M_{\pi}^2(m_{ud}, a^2, L) &= 2B_0 m_{ud} [1 + P_1 m_{ud} + \xi \log(\xi) \\ &+ P_2 m_{ud}^2 + P_a a^2] \\ &\cdot \left[1 + P_{\text{FVE}} \xi \frac{e^{-ML}}{(ML)^{3/2}} \right] \end{split}$$

FVEs correction (a) C. Aubin et al., 2016 80 **O** dual + $\pi \pi (M_{\pi} = 135 \text{ MeV})$ $\Delta_{FVE} a_{\mu}^{HVP} (ud) * 10^{10}$ 60 L=4.5 fm 4 levels



continuum limit

5% **□** L=6.0 fm 8 levels NLO ChPT: no interaction in the two-pion system 20 1% 0 10

light-quark connected contribution

$M_{\pi}^{phys}L$	L (fm)	$\Delta_{ ext{FVE}}^{ ext{lat}}(L)/\Delta_{ ext{FVE}}^{ ext{ChPT,NLO}}(L)$
2.7	4.0	2.17 (17)
3.1	4.5	1.95 (13)
3.4	5.0	1.79(10)
3.8	5.5	1.68(8)
4.1	6.0	1.60(6)
4.8	7.0	1.48(4)
5.5	8.0	1.37(5)

M L

 $\frac{\Delta_{\text{FVE}}^{\text{Iat}}}{\text{ChPT,NLO}} (L = 5 \div 6 \text{ fm}) \simeq 1.7(1)$

 $(5.4 \text{ fm} \to 10.8 \text{ fm})$

PACS19

C. Aubin et al., 2019 ChPT,NNLO $(L = 5 \div 6 \text{ fm}) \simeq 1.4(2)$ **NNLO ChPT**

lattice

10

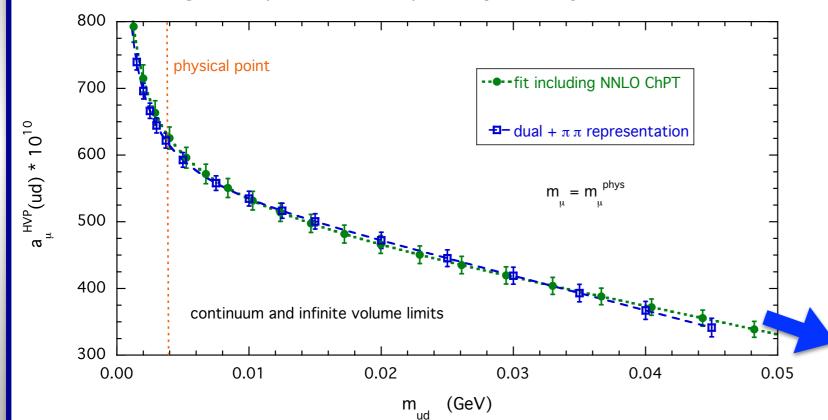
Extrapolation to M_{π}^{phys}

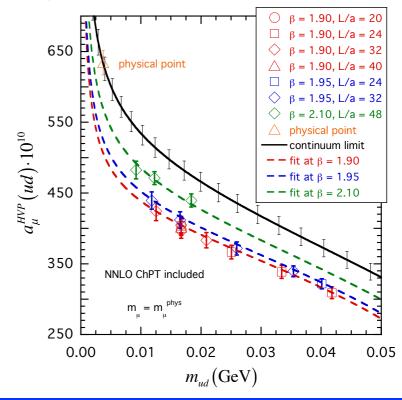
$$a_{\mu}^{\mathrm{HVP}}\left(ud\right) \text{ diverges in the chiral limit } \longrightarrow a_{\mu}^{\mathrm{HVP}}\left(ud\right) = \left\{\left[a_{\mu}^{\mathrm{HVP}}\right]^{NLO} + \left[a_{\mu}^{\mathrm{HVP}}\right]^{NNLO}_{L_{9},C_{93}} + A_{0} + A_{1}m_{ud}\right\}\left(1 + D_{0}a^{2} + D_{1}a^{2}m_{ud}\right)$$

 $ln(m_{ud})$ LECs-independent

E. Golowich and J. Kambor, 1995; G. Amoros et al., 2000 J. Bijnens and J. Refelors, 2016; M. Golterman et al., 2017

Using the (dual + π - π) analytic representation





The blue points do not contain chiral logs explicitly

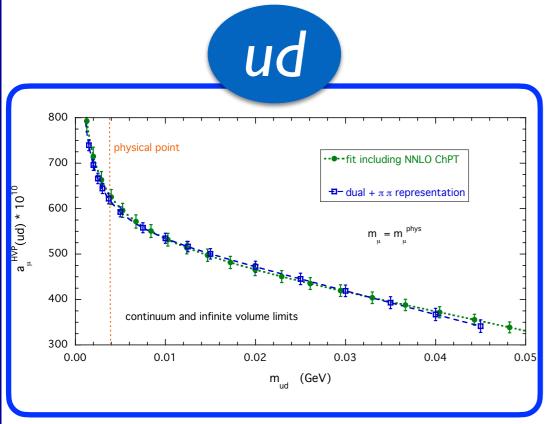
Using the analytic representation $a_{\mu}^{\mathrm{HVP}}(ud)$ does not depend on the absolute scale setting

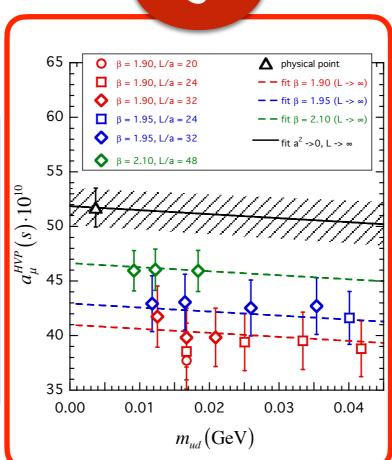
$$V_{dual+\pi\pi}(t) = M_{\pi}^{3} \widetilde{V} \left(\tau_{\pi}; R_{dual}, \frac{E_{dual}}{M_{\pi}}, \frac{M_{\rho}}{M_{\pi}}, g_{\rho\pi\pi} \right)$$

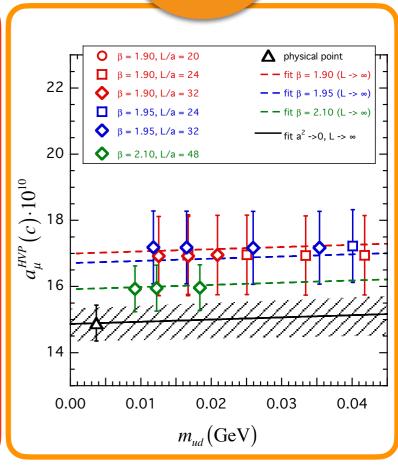
$$\tau_{\pi} = M_{\pi}t \quad \text{dimensionless quantities}$$

$$a_{\ell}^{\text{HVP}}(ud) = 4\alpha_{em}^2 \int_0^\infty d\tau_{\pi} \widetilde{K}_{\ell}(\tau_{\pi}) \widetilde{V}(\tau_{\pi})$$

udsc-quark contributions







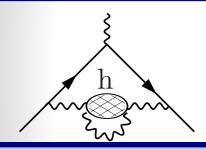
$$a_{\mu}^{\text{HVP}}(ud) = 629.1(11.5)(7.5)[13.7] \cdot 10^{-10}$$

$$a_{\mu}^{\text{HVP}}(s) = 53.1(2.5) \cdot 10^{-10}$$

$$a_{\mu}^{\text{HVP}}(c) = 14.75(56) \cdot 10^{-10}$$

DG et al., 2018 DG and S. Simula, 2019 PRD98(2018) 114504 ArXiv:1910.03874 DG et al., 2017 JHEP1710(2017)157

quark-connected terms only



LIB corrections

quark-connected terms only

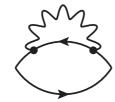
$$\delta a_{\ell}^{\text{HVP}} = \delta a_{\ell}^{\text{HVP}} (QCD) + \delta a_{\ell}^{\text{HVP}} (QED)$$

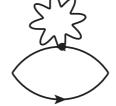
photon zero-mode: QED_L M. Hayakawa and S. Uno, 2008

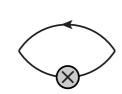
$$\delta a_{\ell}^{\text{HVP}}(QCD) = \sum_{f=u,d,s,c} 4\alpha_{em}^2 \sum_{t=0}^{\infty} \widetilde{f}_{\ell}(t) \delta V_f^{QCD}(t)$$

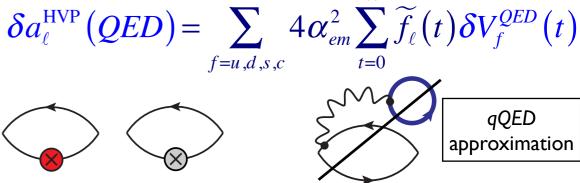
RMI23 method

G. M. de Divitiis et al., 2012; 2013







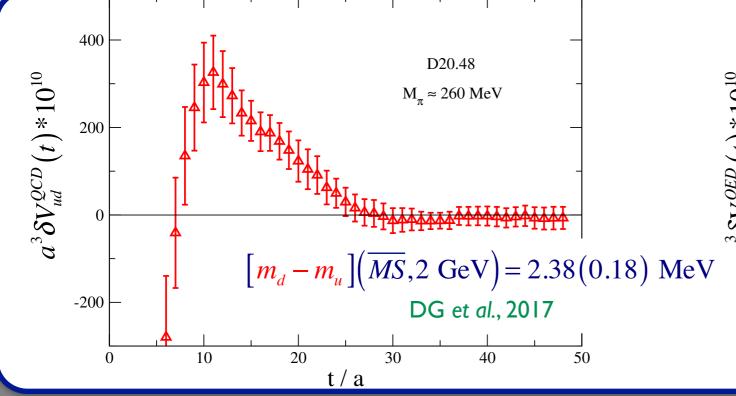


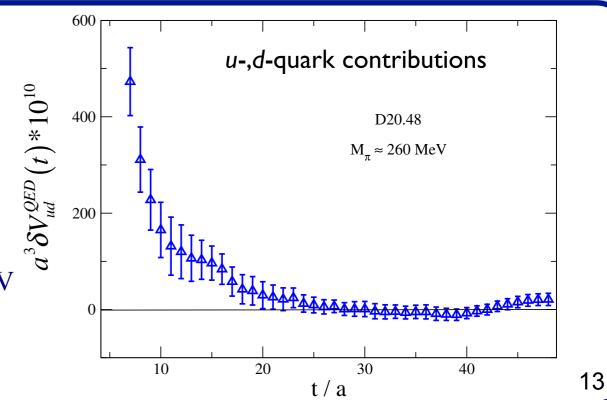
isoQCD/IB separation: consistent prescriptions

QCD/QED separation is scheme and scale dependent

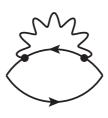
$$m_f(\overline{MS}, 2 \text{ GeV}) = m_f^0(\overline{MS}, 2 \text{ GeV})$$
J. Gasser et al., 2003

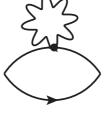
What is QCD in the full QCD+QED theory? see M. Di Carlo et al., 2019

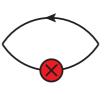


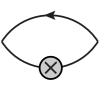


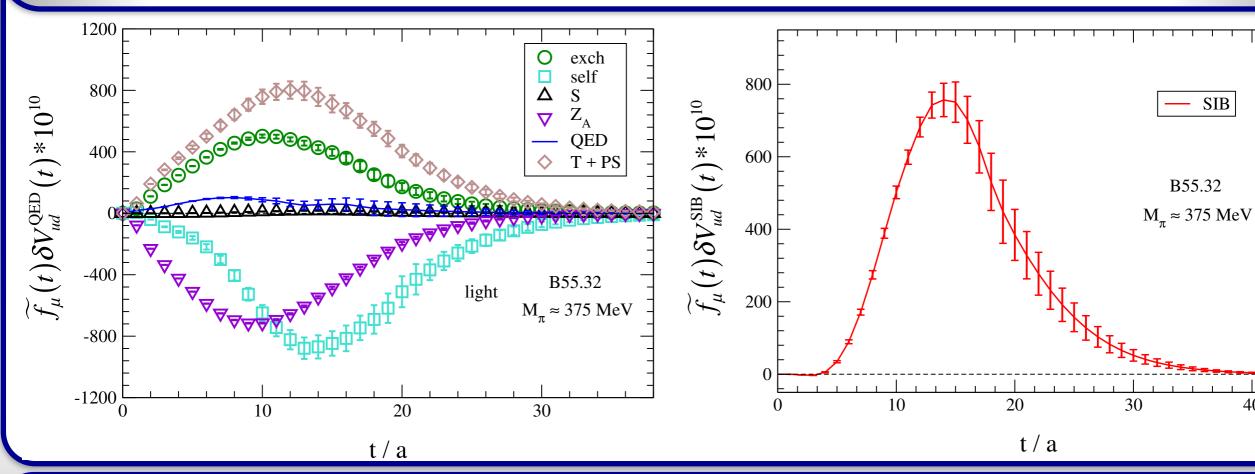
LIB corr.:











$$Z_{A} = Z_{A}^{(0)} \left(1 + \frac{\alpha_{em}}{4\pi} \delta Z_{A}^{QED} Z_{A}^{fact} \right) + O(\alpha_{em}^{m} \alpha_{s}^{n})$$

$$\delta Z_A^{QED} = -15.7963 \ q_f^2$$

perturbative estimate at LO G. Martinelli and Y.-C. Zhang, 1982

$$\delta V_f^{Z_A}(t) = \frac{\alpha_{em}}{4\pi} \delta Z_A^{QED} Z_A^{fact} V^f(t)$$

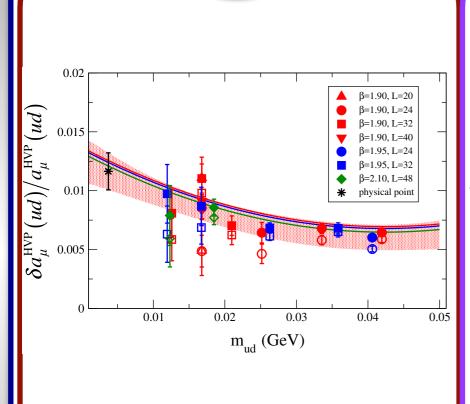
β	$Z_m^{\text{fact}}(M1)$	$Z_A^{\text{fact}}\left(\mathbf{M1}\right)$	Z_m^{fact} (M2)	Z_A^{fact} (M2)
1.90	1.629 (41)	0.859 (15)	1.637 (14)	0.990(9)
1.95	1.514 (33)	0.873 (13)	1.585 (12)	0.980(8)
2.10	1.459 (17)	0.909 (6)	1.462 (6)	0.958 (3)

RI'-MOM @ $O(\alpha_{em}\alpha_s^n)$

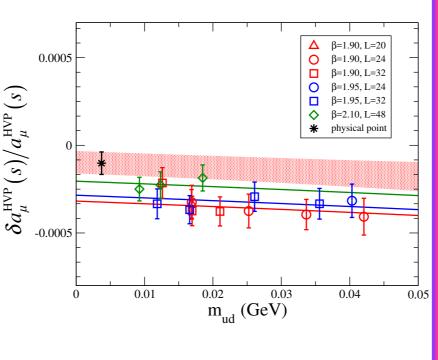
DG et al., 2019; M. Di Carlo et al., 2019

LIB corr.: udsc-quark contr.

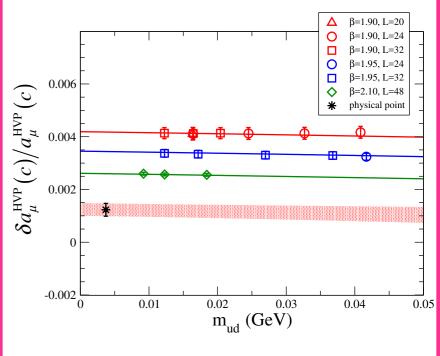
ud



S



C



$$\delta a_{\mu}^{\text{HVP}}(ud) = 7.1(2.5) \cdot 10^{-10}$$

$$\delta a_{\mu}^{\text{HVP}}(s) = -0.0053(33) \cdot 10^{-10}$$

$$\delta a_{\mu}^{\text{HVP}}(c) = 0.0182(36) \cdot 10^{-10}$$

DG et al., 2019 PRD99(2019)114502

$$\delta a_{\mu}^{\text{HVP}} = 7.1(2.6)(1.2)_{qQED+disc} \cdot 10^{-10}$$

$$= 7.1(2.9) \cdot 10^{-10}$$

$a_e^{\rm HVP}$ and $a_{\tau}^{\rm HVP}$: Lattice results

LO

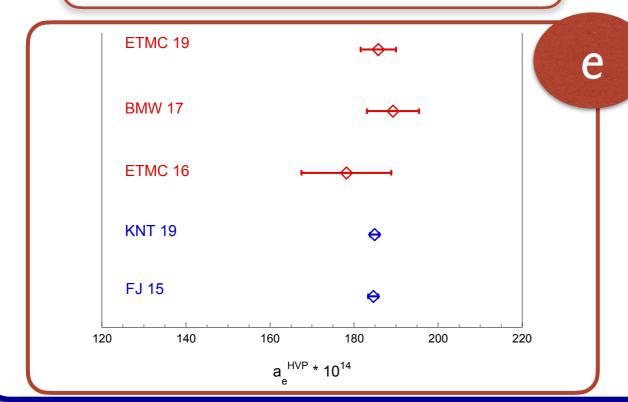
ArXiv:1910.03874

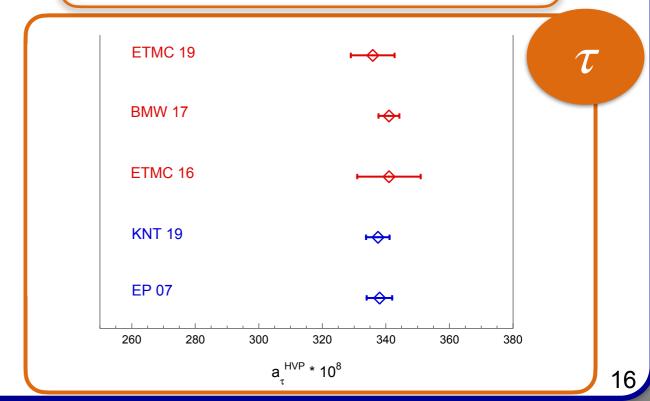
IB

f	$a_e^{\mathrm{HVP}}(f) \cdot 10^{14}$	$a_{\tau}^{\mathrm{HVP}}(f) \cdot 10^{8}$
ud	170.7 (3.9)	273.3 (6.6)
s	13.5 (0.8)	36.2(1.1)
c	3.5 (0.2)	25.8 (0.8)
disc BM	IW 17 $-3.8 (0.4)$	-2.4 (0.3)

\overline{f}	$\delta a_e^{\mathrm{HVP}}(f) \cdot 10^{14}$	$\delta a_{\tau}^{\mathrm{HVP}}(f) \cdot 10^{8}$
$\overline{}$ ud	1.9 (0.8)	3.0 (1.1)
s	$-0.002 \ (0.001)$	$0.001 \ (0.002)$
c	$0.004 \ (0.001)$	$0.032 \ (0.006)$
total	1.9(1.0)	3.0 (1.3)

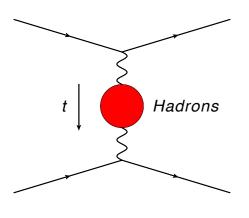
$$a_e^{\text{HVP}} = 185.8(4.2) \cdot 10^{-14}$$





MUonE experiment

MUonE



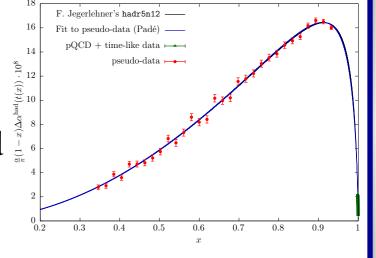
$$t(x) \equiv -\frac{x^2}{1-x} m_{\mu}^2$$

B. E. Lautrup et al., 1972

$$a_{\mu}^{\text{HVP}} = \frac{\alpha_{em}}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{em}^{\text{HVP}} [t(x)]$$

$$\sigma(\mu e \to \mu e)$$

 $x \in [0.93, 1]$ not experimentally reached



Using the (dual + π - π) repr.

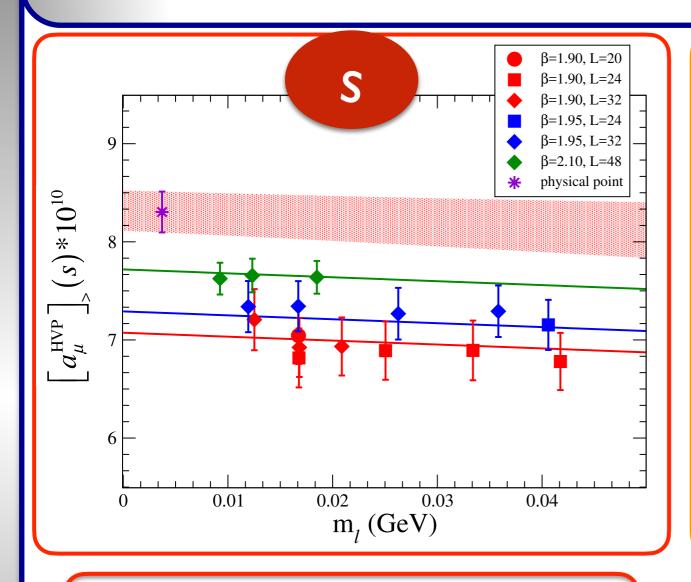
$$\left[a_{\mu}^{\text{HVP}}\right] = 4\alpha_{em}^2 \int_0^{\infty} dt \left[\widetilde{f}_{\mu}(t)\right] V(t)$$

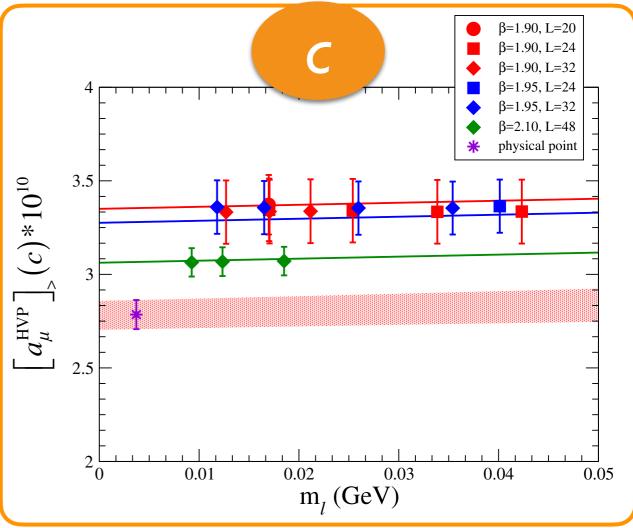
$$[a_{\mu}^{\text{HVP}}]_{>}(ud) = 81.2(1.7) \cdot 10^{-10}$$

quark-connected terms only

Uncertainty $\left(\approx 2\cdot 10^{-10}\right)$ close to the experimental statistical target $\left(\approx 0.3\%\right)$ of $\left[a_{\mu}^{\text{HVP}}\right]$

MUonE





$$\left[a_{\mu}^{\text{HVP}}\right]_{>}(s) = 8.30(21)_{stat}(32)_{syst} \cdot 10^{-10}$$

$$\left[a_{\mu}^{\text{HVP}}\right]_{>}(c) = 2.785(78)_{stat}(68)_{syst} \cdot 10^{-10}$$

\overline{f}	$[\delta a_{\mu}^{\rm HVP}]_{>}(f) \cdot 10^{10}$
\overline{ud}	0.9(0.3)
S	-0.0005 (0.0004)
c	$0.0034 \ (0.0007)$
total	0.9(0.3)

$$\left[a_{\mu}^{\text{HVP}}\right]_{>} = 92(2) \cdot 10^{-10}$$

Benchmark quantities

Windows

$$a_{\mu}^{\mathrm{HVP}} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}$$

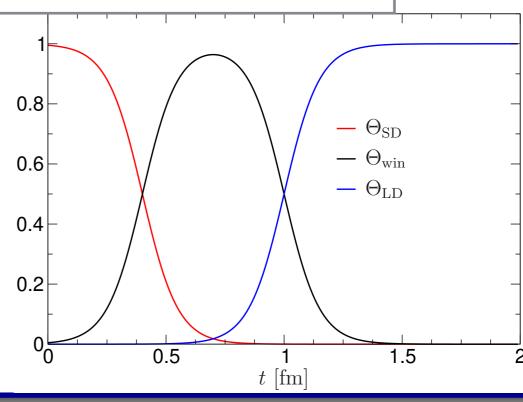
$$a_{\mu}^{SD}(f;t_{0},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, K_{\mu}(t) V^{f}(t) \left[1 - \Theta\left(t,t_{0},\Delta\right) \right]$$

$$a_{\mu}^{W}(f;t_{0},t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, K_{\mu}(t) V^{f}(t) \left[\Theta\left(t,t_{0},\Delta\right) - \Theta\left(t,t_{1},\Delta\right) \right]$$

$$a_{\mu}^{LD}(f;t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, K_{\mu}(t) V^{f}(t) \Theta\left(t,t_{1},\Delta\right)$$

$$\Theta(t, t', \Delta) = \frac{1}{1 + e^{-2(t-t')/\Delta}}$$

$$t_0 = 0.4 \text{ fm}$$
 $t_1 = 1.0 \text{ fm}$ $\Delta = 0.15 \text{ fm}$



Effective lepton mass and effective windows

$$m_{\mu}^{eff} \equiv \left(m_{\mu}/X^{phys}\right)X$$

$$\Delta^{eff} \equiv \Delta X^{phys} / X$$

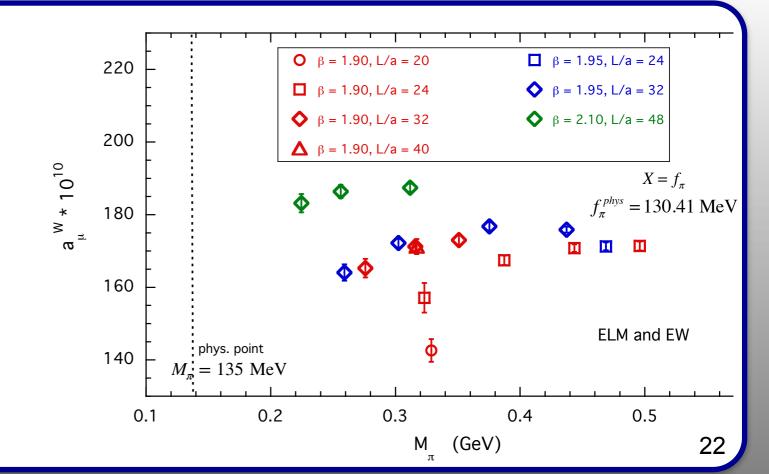
$$t_0^{eff} \equiv t_0 X^{phys} / X$$
 $t_1^{eff} \equiv t_1 X^{phys} / X$

$$a_{\mu}^{W}\left(f;t_{0}^{eff},t_{1}^{eff},\Delta^{eff}\right) = 4\alpha_{em}^{2} \frac{1}{m_{\mu}^{2}} \left(\frac{X^{phys}}{aX}\right)^{2} \sum_{n=1}^{N_{T}} \widetilde{K}_{\mu} \left(m_{\mu} \frac{aX}{X^{phys}}n\right) a^{3} V^{f}(an)$$

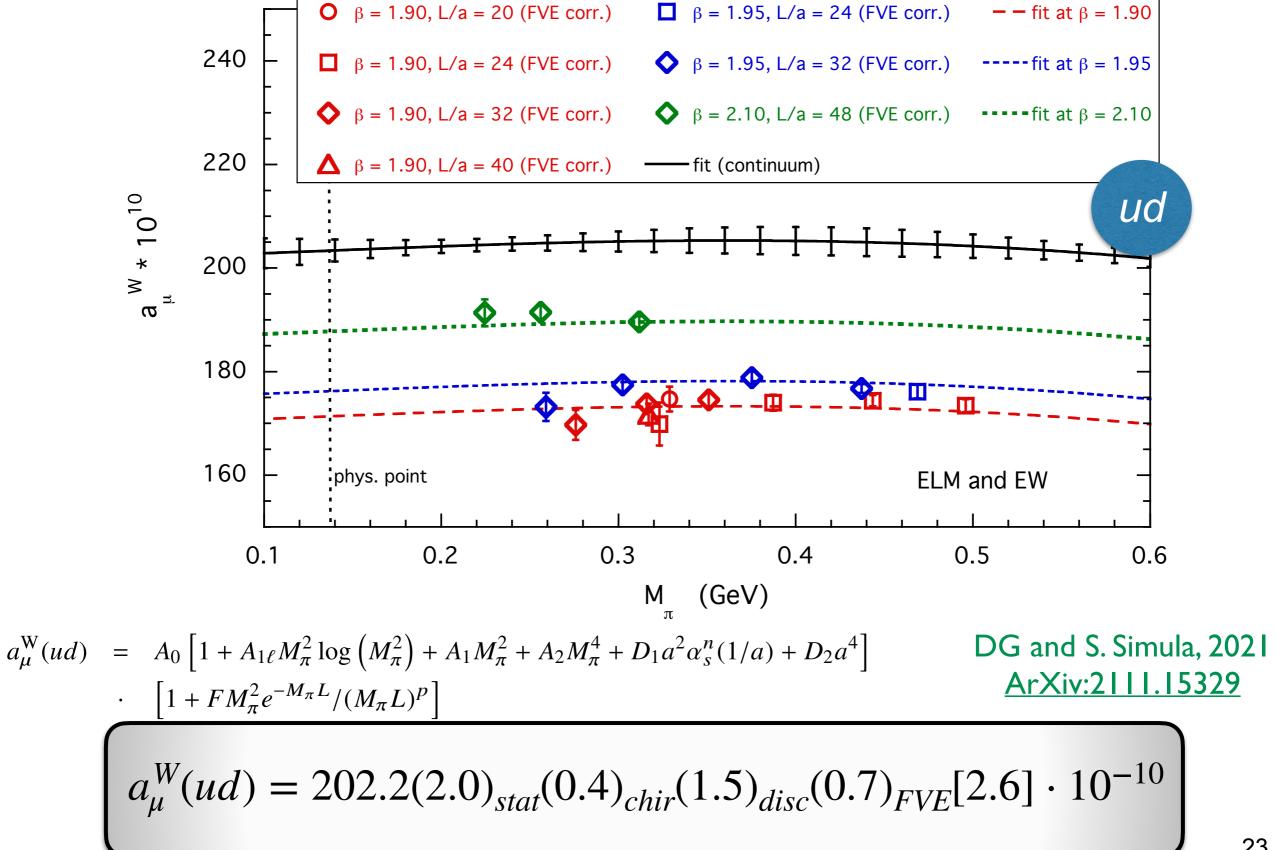
$$\cdot \left[\Theta\left(aXn,t_{0}X^{phys};\Delta X^{phys}\right) - \Theta\left(aXn,t_{1}X^{phys};\Delta X^{phys}\right)\right]$$

$a^W_\mu(ud)$

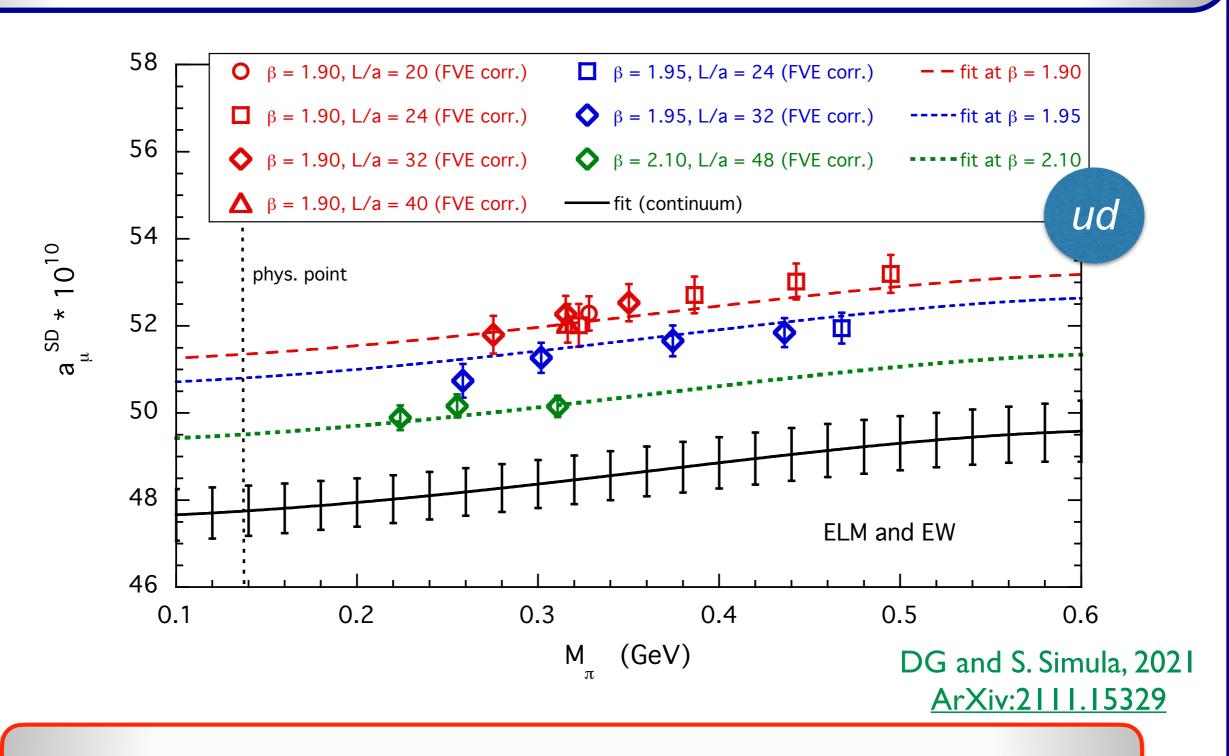
- Advantage: uncertainty of the scale setting does not play any role
- For $X = f_{\pi}$ the pion mass dependence is mild
- Visible FVEs and large discretization effects



Intermediate window



SD window



$$a_u^{SD}(ud) = 48.21(0.56)_{stat}(0.10)_{chir}(0.50)_{disc}(0.25)_{FVE}[0.80] \cdot 10^{-10}$$

LD window

$$a_{\mu}^{LD}(ud) = 382.5(10.5)_{stat}(5.2)_{syst}[11.7] \cdot 10^{-10}$$

analytic representation

analytic representation

data driven

$$a_{\mu}^{W}(ud) = 198.0(3.4)_{stat}(4.7)_{syst}[5.8] \cdot 10^{-10}$$

$$a_{\mu}^{SD}(ud) = 48.6(1.8)_{stat}(1.0)_{syst}[2.0] \cdot 10^{-10}$$

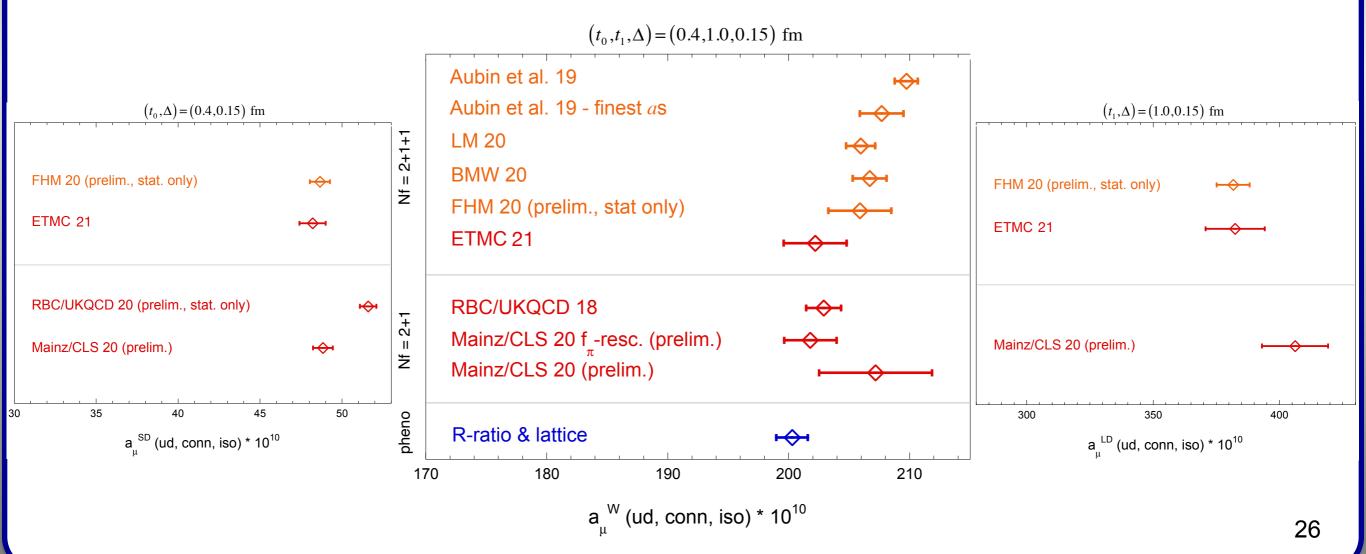
$$a_{\mu}^{W}(ud) = 202.2(2.0)_{stat}(1.7)_{syst}[2.6] \cdot 10^{-10}$$

$$a_{\mu}^{SD}(ud) = 48.21(0.56)_{stat}(0.57)_{syst}[0.80] \cdot 10^{-10}$$

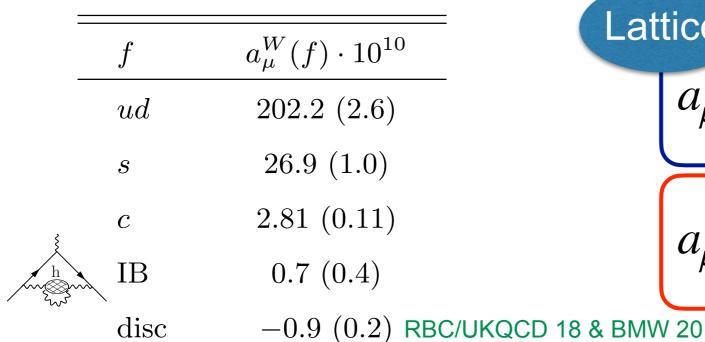
good consistency

Summary: ud contribution

f	$a_{\mu}^{SD}(f) \cdot 10^{10}$	$a_{\mu}^{W}(f) \cdot 10^{10}$	$a_{\mu}^{LD}(f) \cdot 10^{10}$
ud	48.2 (0.8)	202.2(2.6)	382.5 (11.7)



Intermediate window other contributions

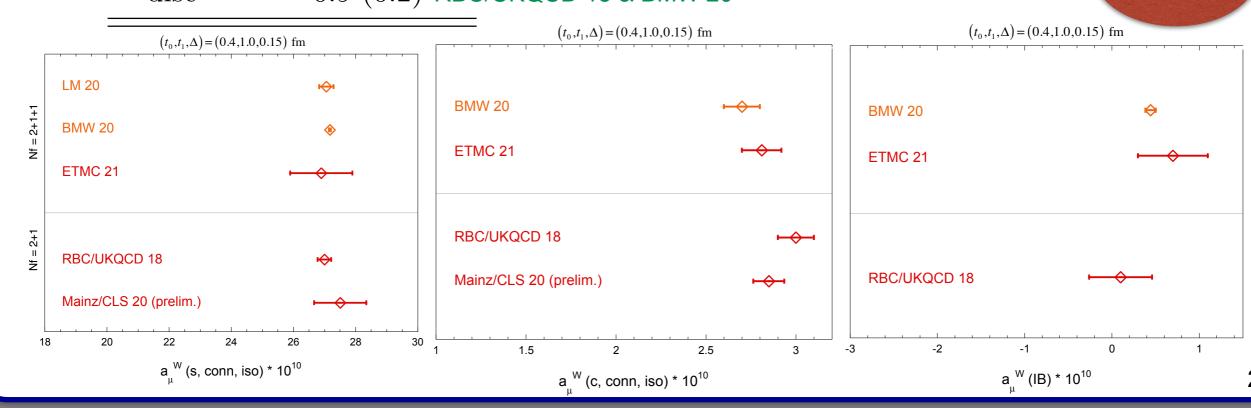


Lattice

$$a_{\mu}^{W} = 231.7(2.8) \cdot 10^{-10}$$
ArXiv:2111.15329

$$a_{\mu}^{W} = 229.7(1.3) \cdot 10^{-10}$$

R-ratio



Moments of the HVP function

light-quark connected contribution

$$\Pi_{n+1}^{ud} \equiv \left(-\right)^n \frac{(n+1)!}{(2n+4)!} \frac{18}{5} \int_0^\infty dt \ t^{2n+4} V^{ud}(t)$$

Total (incl. s,c-quak;disc.;IB)

$$\Pi_1^{tot} = 0.100(3) \text{ GeV}^{-2}$$

$$\Pi_1^{tot} = 0.1000(30) \text{ GeV}^{-2}$$
 Sz. Borsanyi et al., 2016 $\Pi_1^{tot} = 0.1000(23) \text{ GeV}^{-2}$ FHM19

(dual + π - π) representation

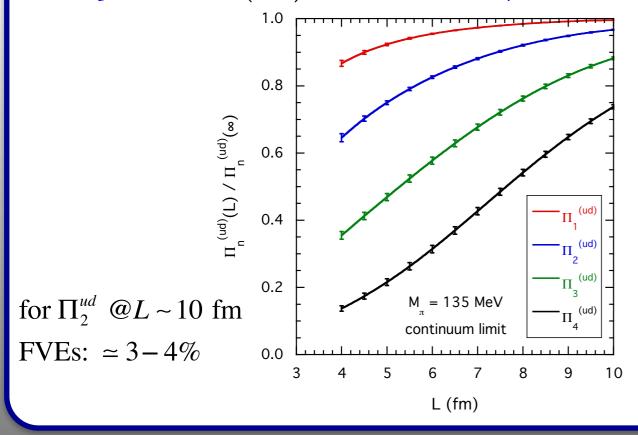
$$\Pi_1^{ud} = 0.1642(33) \text{ GeV}^{-2} \qquad \Pi_2^{ud} = -0.383(16) \text{ GeV}^{-4}$$

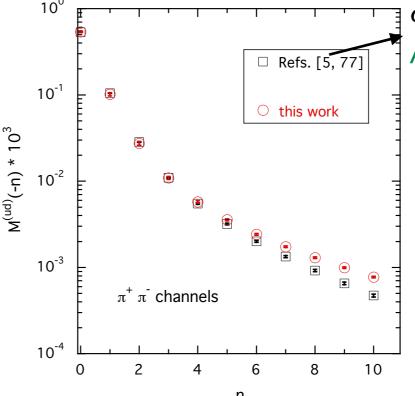
$$\Pi_2^{ud} = -0.383(16) \text{ GeV}^{-4}$$

$$\Pi_2^{ud} = -0.311(16) \text{ GeV}^{-4} \text{ Sz. Borsanyi et al., 2016}$$

$$\Pi_3^{ud} = 1.394(65) \text{ GeV}^{-6} \qquad \Pi_4^{ud} = -7.60(28) \text{ GeV}^{-8}$$

$$\Pi_4^{ud} = -7.60(28) \text{ GeV}^{-8}$$





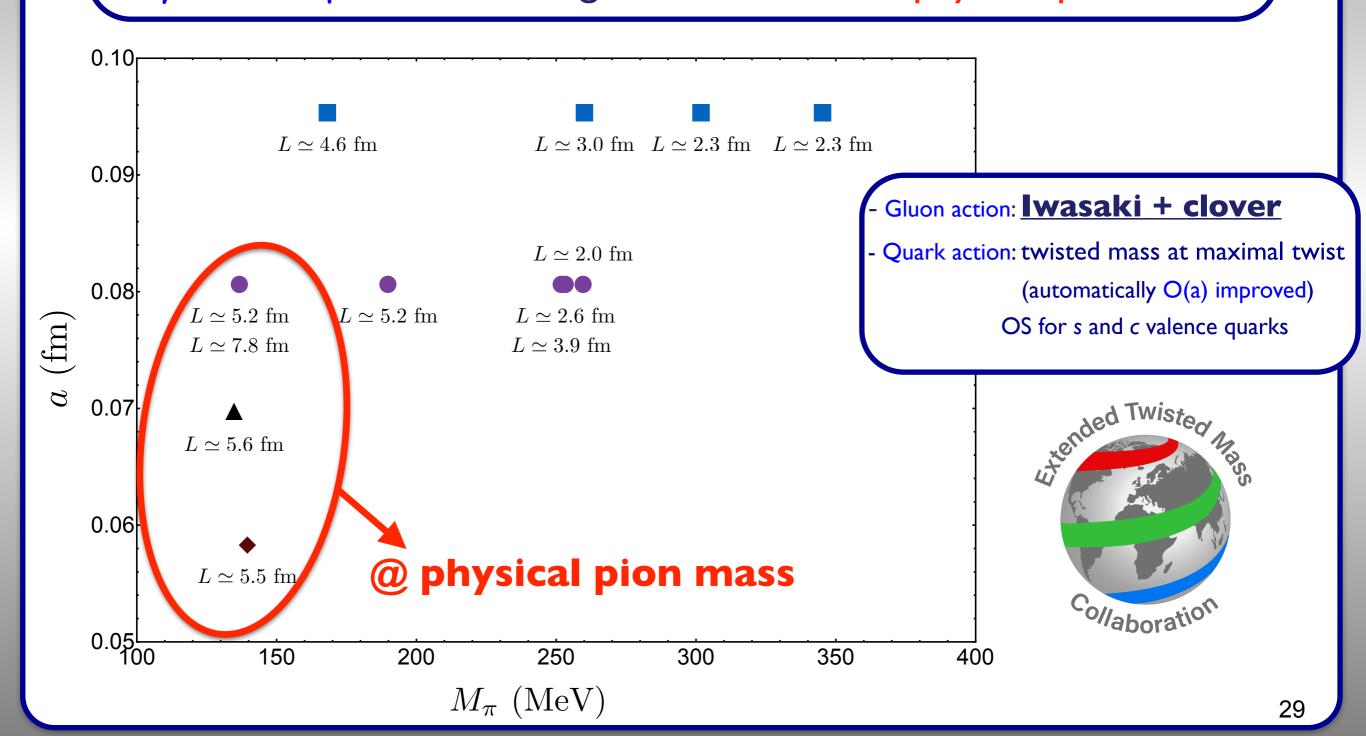
$$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$$

A. Keshavarzi et al., 2018

large time-distance behavior of $V^{ud}(t)$ reliably evaluated by using the repr.

New ETMC setup

We are generating new gauge field configurations with Nf=2+1+1 dynamical quarks, including ensembles at the physical pion mass



Conclusions

- The HVP contribution is currently one of the most important sources of the theoretical uncertainty to the muon (g-2) \longrightarrow LQCD
- We have performed a first-principles lattice QCD+QED calculation of a_{ℓ}^{HVP} . Our results agree with recent determinations based on dispersive analyses.

$$a_e^{\text{HVP}} = 185.8(4.2) \cdot 10^{-14}$$

In progress

$$a_e^{\text{HVP}} = 185.8(4.2) \cdot 10^{-14}$$
 $a_\mu^{\text{HVP}} = 692.1(16.3) \cdot 10^{-10}$ $a_\tau^{\text{HVP}} = 335.9(6.9) \cdot 10^{-8}$

$$a_{\tau}^{\text{HVP}} = 335.9(6.9) \cdot 10^{-8}$$

DG and S. Simula, 2019

Window contributions are sharp benchmark quantities. Our result for the intermediate window is in agreement with the R-ratio prediction.

$$a_{\mu}^{W} = 231.7(2.8) \cdot 10^{-10}$$
DG and S. Simula, 2021

- evaluation of the quark-disconnected terms and relaxation of the qQED approximation
- use of the new ETMC lattice setup @ the physical pion point