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Introduction and motivations
[Aoyama et al. 20, Abi et al. 21]

Contribution Section Equation Value ⇥1011 References

Experiment (E821) Eq. (8.13) 116 592 089(63) Ref. [1]

HVP LO (e+e�) Sec. 2.3.7 Eq. (2.33) 6931(40) Refs. [2–7]
HVP NLO (e+e�) Sec. 2.3.8 Eq. (2.34) �98.3(7) Ref. [7]
HVP NNLO (e+e�) Sec. 2.3.8 Eq. (2.35) 12.4(1) Ref. [8]
HVP LO (lattice, udsc) Sec. 3.5.1 Eq. (3.49) 7116(184) Refs. [9–17]
HLbL (phenomenology) Sec. 4.9.4 Eq. (4.92) 92(19) Refs. [18–30]
HLbL NLO (phenomenology) Sec. 4.8 Eq. (4.91) 2(1) Ref. [31]
HLbL (lattice, uds) Sec. 5.7 Eq. (5.49) 79(35) Ref. [32]
HLbL (phenomenology + lattice) Sec. 8 Eq. (8.10) 90(17) Refs. [18–30, 32]

QED Sec. 6.5 Eq. (6.30) 116 584 718.931(104) Refs. [33, 34]
Electroweak Sec. 7.4 Eq. (7.16) 153.6(1.0) Refs. [35, 36]
HVP (e+e�, LO + NLO + NNLO) Sec. 8 Eq. (8.5) 6845(40) Refs. [2–8]
HLbL (phenomenology + lattice + NLO) Sec. 8 Eq. (8.11) 92(18) Refs. [18–32]
Total SM Value Sec. 8 Eq. (8.12) 116 591 810(43) Refs. [2–8, 18–24, 31–36]
Di↵erence: �aµ := aexp

µ � aSM
µ Sec. 8 Eq. (8.14) 279(76)

Table 1: Summary of the contributions to aSM
µ . After the experimental number from E821, the first block gives the main results for the hadronic

contributions from Secs. 2 to 5 as well as the combined result for HLbL scattering from phenomenology and lattice QCD constructed in Sec. 8. The
second block summarizes the quantities entering our recommended SM value, in particular, the total HVP contribution, evaluated from e+e� data,
and the total HLbL number. The construction of the total HVP and HLbL contributions takes into account correlations among the terms at di↵erent
orders, and the final rounding includes subleading digits at intermediate stages. The HVP evaluation is mainly based on the experimental Refs. [37–
89]. In addition, the HLbL evaluation uses experimental input from Refs. [90–109]. The lattice QCD calculation of the HLbL contribution builds on
crucial methodological advances from Refs. [110–116]. Finally, the QED value uses the fine-structure constant obtained from atom-interferometry
measurements of the Cs atom [117].

0. Executive Summary

The current tension between the experimental and the theoretical values of the muon magnetic anomaly, aµ ⌘
(g � 2)µ/2, has generated significant interest in the particle physics community because it might arise from e↵ects
of as yet undiscovered particles contributing through virtual loops. The final result from the Brookhaven National
Laboratory (BNL) experiment E821, published in 2004, has a precision of 0.54 ppm. At that time, the Standard
Model (SM) theoretical value of aµ that employed the conventional e+e� dispersion relation to determine hadronic
vacuum polarization (HVP), had an uncertainty of 0.7 ppm, and aexp

µ di↵ered from aSM
µ by 2.7�. An independent

evaluation of HVP using hadronic ⌧ decays, also at 0.7 ppm precision, led to a 1.4� discrepancy. The situation was
interesting, but by no means convincing. Any enthusiasm for a new-physics interpretation was further tempered when
one considered the variety of hadronic models used to evaluate higher-order hadronic light-by-light (HLbL) diagrams,
the uncertainties of which were di�cult to assess. A comprehensive experimental e↵ort to produce dedicated, precise,
and extensive measurements of e+e� cross sections, coupled with the development of sophisticated data combination
methods, led to improved SM evaluations that determine a di↵erence between aexp

µ and aSM
µ of ⇡ 3–4�, albeit with

concerns over the reliability of the model-dependent HLbL estimates. On the theoretical side, there was a lot of activity
to develop new model-independent approaches, including dispersive methods for HLbL and lattice-QCD methods for
both HVP and HLbL. While not mature enough to inform the SM predictions until very recently, they held promise
for significant improvements to the reliability and precision of the SM estimates.

This more tantalizing discrepancy is not at the discovery threshold. Accordingly, two major initiatives are aimed
at resolving whether new physics is being revealed in the precision evaluation of the muon’s magnetic moment. The
first is to improve the experimental measurement of aexp

µ by a factor of 4. The Fermilab Muon g � 2 collaboration is
actively taking and analyzing data using proven, but modernized, techniques that largely adopt key features of magic-
momenta storage ring e↵orts at CERN and BNL. An alternative and novel approach is being designed for J-PARC. It
will feature an ultra-cold, low-momentum muon beam injected into a compact and highly uniform magnet. The goal
of the second e↵ort is to improve the theoretical SM evaluation to a level commensurate with the experimental goals.
To this end, a group was formed—the Muon g�2 Theory Initiative—to holistically evaluate all aspects of the SM and
to recommend a single value against which new experimental results should be compared. This White Paper (WP) is
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I E989 expected to reduce exp. uncertainty by 4

I To match E989 final uncertainty, 2h precision
required for the Hadronic SM contribution

I Lattice has to improve by a factor 4–15

I We need to develop new strategies to make
lattice computations for (g−2)µ significantly
cheaper and therefore more precise and reliable

I In particular: reduce stat. errors at large distances,
access smaller lattice spacings and larger volumes,
· · ·
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The bottleneck: signal/noise ratio for HVP (HLbL,. . . )

I The HVP contribution to aµ = (g − 2)µ/2 reads

aHVP
µ =

(α
π

)2
∫ ∞

0
dx0K(x0,mµ)G(x0)

where

G(x0) =

∫
d3x〈Jem

k (x)Jem
k (0)〉

with K(x0,mµ) being a known function

I For the light-connected contribution
(by far the largest)

σ2
Gconn
u,d

(x0)

[Gconn
u,d (x0)]2

∝ 1
ncnfg

e2(Mρ−Mπ)|x0|

where Mρ is the lightest state in that channel.

I For disconnected contribution is worse since
the variance of the correlator is constant in time
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Signal/noise ratio: the rôle of pions
I By defining Q = γ5D and

Wπ(y0, x) =
∑
~y

Tr
{
Q−1(y , x)[Q−1(y , x)]†

}
at large time distances the pion propagator and its variance go as

Cπ(y0, x0) = 〈Wπ(y0, x)〉 ∝ e−Mπ|y0−x0| σ2
π(y0, x0) ∝ e−2Mπ|y0−x0|

and therefore the signal/noise ratio is (almost) constant

I Indeed, when |y − x | → ∞, numerical simulations confirm that

Tr
{
Q−1(y , x)[Q−1(y , x)]†

}
∝ e−Mπ|y−x|

for every background field in the representative ensemble. The size of each quark line,
exp{−Mπ |y − x |/2}, is responsible for large fluctuations in other connected correlators

I The suppression of the propagator with the distance between source and sink, however,
is also the clue for the solution . . . . . .
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Signal/noise ratio: very generic problem

I Nucleon propagator

CN(y0, x0) = 〈WN(y0, x0)〉 ∝ e−MN |y0−x0|

when |y0 − x0| → ∞ goes as [Parisi 84; Lepage 89]

σ2
N(y0, x0) ∝ e−3Mπ|y0−x0|

and analogously for other baryonic correlation

functions

I Semileptonic B decays. Two (noisy) basic
building blocks:

- Mesons with (large) non-zero momentum

- Static quark line
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Multi-level integration
[Parisi, Petronzio, Rapuano 83; Lüscher, Weisz 01; . . . ; Meyer 02; LG, Della Morte 08 10, . . . ]

I If the action and the obser-
vable can be factorized

S[U] = S0[UΩ0 ] + S2[UΩ2 ] + . . .

O[U] = O0[UΩ0 ]× O2[UΩ2 ]

then

〈O[U] 〉 = 〈 〈〈O0[UΩ0 ]〉〉Λ0×〈〈O2[UΩ2 ]〉〉Λ2 〉Λ1

Λ0 Λ1 Λ2 Λ1

Jem
k Jem

k

Ω0
Ω2

time

sp
a
ce

where
〈〈O0[UΩ0 ]〉〉Λ0 =

1
ZΛ0

∫
DUΛ0 e−S0[UΩ0 ] O0[UΩ0 ]

I Two-level integration:

- n0 configurations UΛ1

- n1 configurations UΛ0 and UΛ2 for each UΛ1

I If 〈〈·〉〉Λi
can be computed efficiently with a statistical error comparable to its central value,

then the prefactor in the signal/noise ratio changes as (until S/N problem solved)
n0 → n0n

2
1

at the cost of generating approximatively n0n1 level-0 configurations
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a
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where
〈〈O0[UΩ0 ]〉〉Λ0 =

1
ZΛ0

∫
DUΛ0 e−S0[UΩ0 ] O0[UΩ0 ]

I With more active blocks, at the cost of approximatively n0n1 level-0 configurations,

n0 → n0n
nblock
1

and the gain increases exponentially with the distance since nblock ∝ |y0 − x0|. For the
same relative accuracy of the correlator, the computational effort would then increase
approximatively linearly with the distance
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Multi-level integration with fermions
[Cè, LG, Schaefer 16; Dalla Brida, LG, Harris, Pepe 20]

I Thanks to

∗ Overlapping Domain Decomp.

∗ Multi-Boson representation
Λ0 Λ1 Λ2 Λ1

Jem
k Jem

k

Ω0
Ω2

time

sp
a
ce

multi-level integration also possible with fermions

I The effective action (determinant of the Dirac operator) can be decomposed as

det D =
det(1− ω)

det DΛ1 detD
−1
Ω0

detD−1
Ω2

and for 2 flavours, for instance, can be represented as

{detD†D}2 =

∫
Dφ . . . exp

{
−S0[UΩ0 , . . . ]− S1[UΛ1 , . . . ]− S2[UΩ2 , . . . ]

}
I Factorization thanks to different representations of various quark-path contributions:

∗ Pseudo-fermions for paths with no loops around Λ1
∗ Multi-Bosons for paths with 1–N loops (N is the number of Multi-Bosons)
∗ Reweighting factor for paths with more than N loops
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Multi-boson block factorization

I The matrix ω is

ω = P∂Λ0D
−1
Ω0

DΛ1,2 D−1
Ω2

DΛ1,0

which is also:

- similar to ω†
Λ0 Λ1 Λ2 Λ1

Ω0
Ω2

time

sp
a
ce

I We can expand again (1− ω)−1 in series
[Lüscher 93; Borici, de Forcrand 95; Jegerlehner 95]

1
det[(1− ω)−1]

=
1

det
[∑∞

n=0 ω
n
] ∝ N/2∏

k=1

1
det
{

(uk − ω)†(uk − ω)
} + . . .

where uk = e i
2πk
N+1 are the roots of PN(ω) =

N∑
n=0

ωn
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Multi-boson block factorization
I By defining the matrix

Wz =

 z P∂Λ0 P∂Λ0D
−1
Ω0

DΛ1,2

P∂Λ2D
−1
Ω2

DΛ1,0 z P∂Λ2


we can re-write

Λ0 Λ1 Λ2 Λ1

Ω0
Ω2

time

sp
a
ce

the auxiliary multi-boson fields can be introduced on both boundaries so that for Nf = 2
[Lüscher 93; Borici, de Forcrand 95; Jegerlehner 95]

N/2∏
k=1

1
det
{

(uk − ω)†(uk − ω)
} =

N∏
k=1

{∫
[dχkdχ

†
k ]e
−|W√

uk
χk |2

}

where, by defining ηk = P∂Λ0χk and ξk = P∂Λ2χk ,

|Wzχk |2 = |P∂Λ0D
−1
Ω0

DΛ1,2ξk |2 + |P∂Λ2D
−1
Ω2

DΛ1,0ηk |2 + z(ηk ,D
−1
Ω0

DΛ1,2ξk ) + . . .

I The dependence of the full bosonic action from the links in Λ0 and Λ2 is thus factorized.
The (small) direct coupling, due to quarks looping up to N times around the boundaries,
is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour
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Signal/noise ratio for HVP: multi-level solution

I Wilson glue with O(a)-improved Wilson quarks

β = 5.3 , (T/a)× (L/a)3 = 96× 483

a = 0.065 fm , Mπ = 270 MeV

n0 = 25 , n1 = 10 , ntot = n0 · n1

I Domain Decomposition adopted:

Λ0 : x0/a ∈ [0, 39] , Λ1 : x0/a ∈ [40, 47] ∪ [88, 95]

Λ2 : x0/a ∈ [48, 87]

100

101

102

103

104

0.5 1 1.5 2 2.5 3

a
2
σ
2
(x

0
)

x0 (fm)

(
α
π

)2 {KGconn
u,d } × 1010

n1 = 1

11 / 14



Signal/noise ratio for HVP: multi-level solution

I Wilson glue with O(a)-improved Wilson quarks

β = 5.3 , (T/a)× (L/a)3 = 96× 483

a = 0.065 fm , Mπ = 270 MeV

n0 = 25 , n1 = 10 , ntot = n0 · n1

I Domain Decomposition adopted:

Λ0 : x0/a ∈ [0, 39] , Λ1 : x0/a ∈ [40, 47] ∪ [88, 95]

Λ2 : x0/a ∈ [48, 87]

100

101

102

103

104

0.5 1 1.5 2 2.5 3

a
2
σ
2
(x

0
)

x0 (fm)

(
α
π

)2 {KGconn
u,d } × 1010

n1 = 1

n1 = 3

11 / 14



Signal/noise ratio for HVP: multi-level solution

I Wilson glue with O(a)-improved Wilson quarks

β = 5.3 , (T/a)× (L/a)3 = 96× 483

a = 0.065 fm , Mπ = 270 MeV

n0 = 25 , n1 = 10 , ntot = n0 · n1

I Sharp rise of σ2 with x0 when computed by a
standard 1-level integration (red points) is
automatically flattened out by the 2-level
integration (blue-points)

I Accurate computations can be obtained at large
distances: no need for any modeling of the
long-distance behaviour of Gconn
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Split-even estimator of disconnected contribution
[LG, Harris, Nada Schaefer 19]

I Advantage of multi-level sets in when variances are due to fluctuations of gauge field.
If not, estimator needs to be first improved. This has been the case for the disconnected
contribution

I The disconnected Wick contraction reads

t(x) = Tr
[
γk{D−1

mu
(x , x)− D−1

ms
(x , x)}

]
= (ms −mu)Tr

[
γkD

−1
mu

D−1
ms

(x , x)
]

I Standard stochastic estimator [〈η(x)η†(y)〉 = δxy ]

θ(x) =
(ms−mu)

Ns

Ns∑
i=1

Im
[
η†i (x)γk{D−1

mu
D−1

ms
ηi}(x)

]

is expensive. It requires O(104) random fields η
for its σ2 to be dominated by gauge fluctuations

Why random noise much larger than gauge one?
Computable and understandable in QFT
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τ(x)=
(ms−mu)

Ns

Ns∑
i=1

Im
[
{η†i D−1

mu
}(x) γk {D−1

ms
ηi}(x)

]

requires O(102) random fields η to hit gauge
noise. Gain: 2 orders of magnitude. Definition
suggested by the QFT analysis of the variance.

Used in the past for pseudoscalar density
in TMQCD (one-end trick) [ETM Coll. 08, 12]
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Ns
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[
{η†i D−1

mu
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ηi}(x)

]

combined with multi-level integration is
a solution for a precise computation of the
disconnected contribution

It is already being applied in production phase
for HVP and other quantities by CLS
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First multi-level computation of HVP

I Wilson glue with O(a)-improved Wilson quarks

β = 5.3 , (T/a)× (L/a)3 = 96× 483

a = 0.065 fm , Mπ = 270 MeV

n0 = 25 , n1 = 10 , ntot = n0 · n1

I With 2-level integration achieved 1% precision
with just n0 · n1 = 250 configurations

I The contribution to the variance from
the long distance part becomes negligible

I With lighter quarks, the gain due to the 2-level
integration is even more dramatic since
(Mρ −Mπ) increases significantly
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Conclusions & Outlook

I Permille precision and accuracy on HVP is the

challenge for lattice QCD

I Our strategy: new integration and estimators

(better “machine” and “experiment”)
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I Multi-level integration reduces the variance exponentially:

- with the time-distance of the currents

- when pion mass gets lighter (physical point)

I Next step: R&D =⇒ production. Significant human and numerical resources needed

I Analogous variance-reduction pattern expected to work out also for lattice calibration,

electromagnetic corrections, HLbL, baryons, . . .
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