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Introduction and motivations

[Aoyama et al. 20, Abi et al. 21]

Plot courtesy of G. Colangelo

Contribution Section Equation Value x10'" References
Experiment (E821) Eq. (8.13) 116592089(63)  Ref. [1]
HVPLO (¢"e) Sec.2.3.7  Eq.(233) 6931(40) Refs. [2-7]
HVP NLO (™) Sec.2.38  Eq.(234) ~983(7) Ref. [7]
HVP NNLO (e*e™) Sec.2.3.8  Eq.(2.35) 12.4(1)  Ref. [8]
HVP LO (lattice, udsc) Sec.3.5.1  Eq.(3.49) 7116(184)  Refs. [9-17]
HLbL (phenomenology) Sec. 494  Eq.(4.92) 92(19)  Refs. [18-30]
HLbL NLO (phenomenology) Sec.48  Eq.(4.91) 2(1)  Ref.[31]
HLbL (lattice, uds) Sec. 5.7 Eq. (5.49) 79(35)  Ref. [32]
HLbL (phenomenology + lattice) Sec. 8 Eq. (8.10) 90(17)  Refs. [18-30,32]
QED Sec. 6.5 Eq.(6.30) 116584718.931(104)  Refs. [33, 34]
Electroweak Sec. 7.4 Eq. (7.16) 153.6(1.0)  Refs. [35, 36]
HVP (e*e”, LO + NLO + NNLO) Sec. 8 Eq. (8.5) 6845(40) R« 1
HLbL (phenomenology + lattice + NLO) ~ Sec. & Eq. (8.11) 92(18)  Refs. [18-32]
Total SM Value Sec. 8 Eq. (8.12) 116591 810(43)  Refs. [2-8, 18-24, 31-36]
Difference: Aa, = a;” - a;™ Sec. 8 Eq. (8.14) 279(76)
» EO89 expected to reduce exp. uncertainty by 4 PNV AR BN L i
P P Yy by HVP from: 2
: ; ‘ .- BMW20 s
» To match E989 final uncertainty, 2% precision © §
. . - S
required for the Hadronic SM contribution WP20(lattice) Pl
5
. . w
» Lattice has to improve by a factor 4-15 notusedinwezo | £
) DHMZ19 +—e— 3
» We need to develop new strategies to make 3
lattice computations for (g —2),, significantly KNT19 e N
cheaper and therefore more precise and reliable WP20 o i
L Il Il L L a FNA\\_
H . H 0 - - -1 0 10
» In particular: reduce stat. errors at large distances, (0 100
access smaller lattice spacings and larger volumes, [
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The bottleneck: signal/noise ratio for HVP (HLbL,. . .)

» The HVP contribution to a, = (g —2),/2 reads
2 oo
a,I;IVP = (E) / dxo K (x0, mu)G(xo0)
7T 0
where
G(x0) = [ dx(m ()%™ (0)

with K(xg, m,) being a known function

» For the light-connected contribution
(by far the largest)

g %ucznn (x0) 1

2(Mp—Mz)|xo|
[Gﬁodnn (XO)]2

Nenfg

where M, is the lightest state in that channel.

» For disconnected contribution is worse since
the variance of the correlator is constant in time

a20%(x0)

10*
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a=0.065 fm , M; =270 MeV

(V/a*) =96 x 483
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Signal/noise ratio: the réle of pions
» By defining Q = 45D and
Wr (30, x ZTr{o U220 (e O8I

at large time distances the pion propagator and its variance go as

Cr(¥0,%0) = (Wi (¥, x)) o e~ M= lyo—xol Uﬁ(meO) x e 2M=lyo—xo|

and therefore the signal/noise ratio is (almost) constant

» Indeed, when |y — x| — oo, numerical simulations confirm that

T {Q7 (., )[Q@ 7 (y )] } o =M=

for every background field in the representative ensemble. The size of each quark line,

exp{—Mzx|y — x|/2}, is responsible for large fluctuations in other connected correlators

» The suppression of the propagator with the distance between source and sink, however,

is also the clue for the solution ......
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Signal /noise ratio: very generic problem

> Nucleon propagator N=0 n,=1000 M, =455MeV  a=0.093fm
10° ol T T T T ™
—Mp|yo—xol K o daa
Cn(y0,x0) = (Wn(yo,x0)) o e ™M o e, Z Cepeismyy| |
when |yo — Xo‘ — OO goes as [Parisi 84; Lepage 89] 7 ,» i
3
5 My = o0 ]
UN(y07X0) x e [yo—xo| ©
- ]
and analogously for other baryonic correlation .
10" | | | | 1 1.
N 10 20 30 40 50 60
functions o
» Semileptonic B decays. Two (noisy) basic
building blocks:
- Mesons with (large) non-zero momentum B K(@

- Static quark line
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Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If the action and the obser-
vable can be factorized

S[u] = SO[UQ°]+S2[UQZ]+../. 3
O[U] = Oo[Uno] x O2[Un,]
then
(O[U]) = ((Oo[Uap) no x (O2[Unz 1) Az )1y &
where

1 —
{OolUaoline = Z/DUAO e *0[%ol 0p[Ug, ]
» Two-level integration: °

- ng configurations Up,

- ny configurations Up, and Up, for each Uy,

» If {(-))a;, can be computed efficiently with a statistical error comparable to its central value,
then the prefactor in the signal/noise ratio changes as (until S/N problem solved)

no — nonf

at the cost of generating approximatively ngny level-0 configurations
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Multi-level integration

[Parisi, Petronzio, Rapuano 83; Liischer, Weisz 01; ...; Meyer 02; LG, Della Morte 08 10, ...]

» If the action and the obser-
vable can be factorized

SIUl = So[Ugol + S2[Uay] + - -
O[U] = Oo[Ug,] x O2[Ug,]

then

(O[U]) = ({Oo[UqqsINno x {O2[UazINaz)ns o
where

1
(Oo[UaoINne = Zo /DU/\o e[Vl Og[Ug, |
0

» With more active blocks, at the cost of approximatively ngni level-0 configurations,

n .
no — nonlblock

and the gain increases exponentially with the distance since npjock o |yo — xo|. For the

same relative accuracy of the correlator, the computational effort would then increase

approximatively linearly with the distance
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Multi-level integration with fermions

[Cé, LG, Schaefer 16; Dalla Brida, LG, Harris, Pepe 20]

» Thanks to

) 3;;1 Jgm Jem
* Overlapping Domain Decomp.

space
—_

* Multi-Boson representation

multi-level integration also possible with fermions

» The effective action (determinant of the Dirac operator) can be decomposed as

det(1 — w)

det D = — —
det Dp, det DQo det DQz

and for 2 flavours, for instance, can be represented as

{det DID}? = /D(b...exp{fSo[UQO,...] — Si[Unys. ] — SalUna, .1}

» Factorization thanks to different representations of various quark-path contributions:

* Pseudo-fermions for paths with no loops around A
* Multi-Bosons for paths with 1-N loops (N is the number of Multi-Bosons)
* Reweighting factor for paths with more than N loops

8/14



Multi-boson block factorization

» The matrix w is

-1 1
w = Pon, DQO Dp, , Dg, Dy 6

which is also: 0

- similar to w' o 0
Q
time
> We can expand again (1 — w)~? in series
[Liischer 93; Borici, de Forcrand 95; Jegerlehner 95]
N/2
1 1 1-/[ 1 .
= x .
det[(1 —w)~1]  det[> 02 w"] e det{(ug — w)T(up —w)}
N
j2mk n
where uy = e'N+1 are the roots of Py(w) = Zw
n=0
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Multi-boson block factorization

» By defining the matrix

space

1
zPapng  PongDg, Dhy »

W, =

1
Pan, Doy, Day o 2 Pan,

Az

we can re-write o
-
time

the auxiliary multi-boson fields can be introduced on both boundaries so that for Ny = 2
[Liischer 93; Borici, de Forcrand 95; Jegerlehner 95]

N/2 ) N 2
= i e_|W ukal
;<1:[1 det{(uk —w)t(ux —w)} kl:[l {/[kaka] VK }

where, by defining 1, = Papg Xk and & = Pap, Xk,

|Waxkl® = [Pano Day, Dag 26k + |Pong Doy Dag onik|? + 2(mk, Doy Dy 2€k) + - -

» The dependence of the full bosonic action from the links in Ag and Az is thus factorized.
The (small) direct coupling, due to quarks looping up to N times around the boundaries,
is replaced by a block-local interaction of links with N/2 multi-boson fields per flavour
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Signal /noise ratio for HVP: multi-level solution

» Wilson glue with O(a)-improved Wilson quarks
B=53, (T/a)x(L/a)® =96 x 483
a=0.065 fm, M, =270 MeV

nop =25, ny =10, Ntot = No * N1

» Domain Decomposition adopted:

No : Xo/a c [0,39] , N1 Xo/a € [40,47] @] [88,95]

Mo : Xo/a € [48,87]
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Signal/noise ratio for HVP: multi-level solution

» Wilson glue with O(a)-improved Wilson quarks

B=53, (T/a)x (L/a)®=96x 483

a=0.065fm, M; =270 MeV

ng =25, ny =10, Ntot = No - N1

» Sharp rise of o2 with xop when computed by a
standard 1-level integration (red points) is
automatically flattened out by the 2-level
integration (blue-points)

» Accurate computations can be obtained at large
distances: no need for any modeling of the
long-distance behaviour of GO
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Split-even estimator of disconnected contribution

[LG, Harris, Nada Schaefer 19]

\4

Advantage of multi-level sets in when variances are due to fluctuations of gauge field.

If not, estimator needs to be first improved. This has been the case for the disconnected

contribution

» The disconnected Wick contraction reads

t(x) Tr ['yk{D,;ul(x,x) — D,;sl(x,x)}]

(ms — my) Tr [y DRt Dy 2 (x, X))

» Standard stochastic estimator [(n(x)nT(y)) = 6x]
(ms—m,) <°
6(x) = * TS I 0] (<) { D Do i} ()]
s i=1

is expensive. It requires O(10*) random fields 7
for its 02 to be dominated by gauge fluctuations

Why random noise much larger than gauge one?
Computable and understandable in QFT
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Split-even estimator of disconnected contribution

[LG, Harris, Nada Schaefer 19]

v

Advantage of multi-level sets in when variances are due to fluctuations of gauge field.
If not, estimator needs to be first improved. This has been the case for the disconnected
contribution

» The disconnected Wick contraction reads

Tr [ { Dpmy (%, x) = Dt (x, x)}] O Q
u—s u—s

(ms — my) Tr ['ykD;:D;:(X,X)]

t(x)

» Split-even stochastic estimator [(n(x)nf(y)) = 6x]

Vi
107 ¥ standard : E
(msfmu) Ns ¥ 1 1 " split-even o
()= S {0 Dp ) v ADp k()] o T 1
s 4 . "
< 107 | n -
~ -
= [ ]
requires O(10%) random fields 7 to hit gauge S 1078 FO "1
noise. Gain: 2 orders of magnitude. Definition o L .
suggested by the QFT analysis of the variance. T “ o 3
1079 L
Used in the past for pseudoscalar density r, ! . ! }
in TMQCD (one-end trick) [ETM Coll. 08, 12] 1 10 100 1000
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Split-even estimator of disconnected contribution

[LG, Harris, Nada Schaefer 19]

» Advantage of multi-level sets in when variances are due to fluctuations of gauge field.
If not, estimator needs to be first improved. This has been the case for the disconnected

contribution

» The disconnected Wick contraction reads

t(x) = Tr[n{Dn (xx) -

= (ms—my)Tr ['ykD,;ule

» Split-even stochastic estimator [(n(x)n'(y)) = 6x]

T(x)= 7,"”) Zlm [{njD 1

combined with multi-level integration is
a solution for a precise computation of the

disconnected contribution

Dyl (x,x)}]

)]

() ADR i} ()]

It is already being applied in production phase

for HVP and other quantities by CLS
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First multi-level computation of HVP

» Wilson glue with O(a)-improved Wilson quarks

B=53, (T/a)x (L/a)®=96x 483
a=0.065fm, M, =270 MeV
nop =25, ny =10, Ntot = No - N1

> With 2-level integration achieved 1% precision
with just ng - n1 = 250 configurations

» The contribution to the variance from
the long distance part becomes negligible

» With lighter quarks, the gain due to the 2-level
integration is even more dramatic since
(M, — My ) increases significantly
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Conclusions & Outlook

» Permille precision and accuracy on HVP is the

challenge for lattice QCD

» Our strategy: new integration and estimators

(better “machine” and “experiment”)

» Multi-level integration reduces the variance exponentially

- with the time-distance of the currents

- when pion mass gets lighter (physical point)
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» Next step: R&D = production. Significant human and numerical resources needed

» Analogous variance-reduction pattern expected to work out also for lattice calibration,

electromagnetic corrections, HLbL, baryons, ...
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