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New challenges for lattice, in flavor physics

→ View from a different angle: 
     reweighting of the spectral function 
     (or a “smeared spectrum”)

hadronic decays:                             etc

What can we compute other than the form factors?  (choices of my interest) 



Spectral function at work
Muon g-2: a well-known story

Bernecker-Meyer (2011)

spectral funcOon

“smeared spectrum”

Lesson:  “smeared spectrum” can be wriSen using Euclidean correlator. 



Spectrum → Physics

What you have:

Spectral function:

What you want:

approx: by ?

see also, Hansen, Meyer, Robaina, arXiv:1704.08993  (idea to go through approx spectrum) 



Approximation

• Not always possible; when the funcOon 
varies rapidly, in parOcular.  

• Some methods developed recently. 

• Modified Backus-Gilbert 

• Or, Chebyshev polynomial
Bailas, Ishikawa, SH, arXiv:2001.11779

Hansen, Lupo, Tantalo, arXiv:1903.06476



Chebyshev approx:

(shifed) Chebyshev polynomials

“Best” approximaOon can be obtained with 
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Bailas, Ishikawa, SH, arXiv:2001.11779

xt → C(t)

• Constraint |Tj*(e−ω)| ≤ 1 stabilizes the 
expansion. 

• Higher orders are suppressed when the 
coefficients are. It is the case for smooth 
funcOon K(ω)



Inclusive semileptonic decay



B Xc

Inclusive versus exclusive
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Dπ,  Dππ,  …

inclusive

|Vcb| can be determined 
anywhere in the phase space

Can we treat the both on the lattice?



Inclusive rate
DifferenOal decay rate:

Structure funcOon:

Xc(ω)B

Decay rate:

known kinemaOcal factor

“spectral funcOon”



Sum over states = energy integral

Lasce Compton amplitude:

tsrc t1 t2 tsnk

J†
µ J⌫

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and J⌫ are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at su�ciently small !, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

di↵erential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B ! D(⇤)`⌫ channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µ⌫ (tsnk, t1, t2, tsrc) =

X

x

D
PS(x, tsnk)J̃

†
µ(q, t1)J̃⌫(q, t2)P

S†(0, tsrc)
E
, (14)

where PS is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b ! c current

and assumed to carry the spatial momentum projection
P

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.
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=

“smeared spectral funcOon”

approx: by ?



Kernel to approximate
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Compton amplitude
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S-wave (D and D*) 
• Very well approximated by a single-exp  = 

no sign of excited state contrib. 
P-wave (D**’s) 
• Small : no wave funcOon overlap of 

excited states when mb=mc and zero recoil

zero recoil

Pilot lasce computaOon [JLQCD setup] 
• On a lasce of 483x96 at 1/a = 3.6 GeV 
• Strange spectator quark 
• physical charm quark mass 
• (unphysically) light b quark ~ 2.7 GeV 
• 100 configs x 4 src



Inclusive decay rate
• Breakdown to individual channels: VV and 

AA; parallel and perp with respect to the 
recoil momentum 

• Compared to exclusive contribuOons 
esOmated from B→D(*) form factors 
(dashed line), that are separately 
calculated. 

• VV|| dominated by B→D 
• All others by B→D*
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Comparison with OPE
Gambino, SH, Machler, arXiv:2111.02833
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OPE at O(αs), O(1/mb3) with 
• physical charm mass 
• mb to reproduce Bs mass 

• MEs from fits of exp’t; allowing 
15% or 25% uncertainty (for 
those of 1/mb2 and 1/mb3) 

• αs = 0.32(1)

Gambino, Melis, Simula, arXiv:1704.06105

Reasonable agreement observed. Further analysis to 
study the consistency between OPE and lattice.



(arbitrary) Moments
Gambino, SH, Machler, arXiv:2111.02833

Arbitrary moments/cuts can be implemented.

cuts by modifying the upper/lower limits
insert any funcOon

• Smooth funcOon of ω can be approximated easier. 
• Cuts would be crucial for b→u to avoid large background from b→c .

B Xc



(arbitrary) Moments

Gambino, SH, Machler, arXiv:2111.02833
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Potential impacts
• Inclusive and Exclusive (B→D(*)) can be computed on the same lasce setup. Treat the 

both with similar systemaOcs. Does the incl-vs-excl tension persist? 

• Can be used to test the convergence of OPE. 

• Can find the best moments to suppress errors for lasce, pQCD (or OPE), exp’t. 

• Can be applied for b→u and b→s  

• Does the approximaOon really control systemaOc errors?  Non-trivial, especially on 
finite volumes where the spectrum is non-smooth.

Possible problems



More applications of the 
smeared spectrum



Scattering amplitude
Bulava, Hansen, arXiv:1903.11735

LSZ reduction: amplitude at the pole

inserting complete set of states

Looks like a smeared spectrum

Time-like pion form factor, 0→ππ, as an example:



Smeared spectrum as a filtering

Maiani-Testa says that only the threshold 
amplitude (q = 0) can be obtained from 

Otherwise, the zero (relative) momentum 
states will dominate the correlator.

M. Bruno and M. Hansen, arXiv:2012.11488

Consider, instead,

smoothed Heaviside function

• Look at the intermediate states only 
above 

• Introduce the smearing so that it can 
be calculated more easily.



: time-like form factor 
at any energy

known functions

Again, the question reduces to how well one can 
implement (matrix-valued) sigmoid function. 

M. Bruno and M. Hansen, arXiv:2012.11488

PotenOal applicaOon to:  K→ππ, D→ππ, …, B→ππ



Even more challenging (towards DWQ@50)
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Figure 1: Short distance (left) and long distance contributions D0-D0 mixing in the
Standard Model.

so the predictions for the mixing parameters x and y within the SM span several
orders of magnitude between 10−8 and 10−2 [1, 2]. Due to large uncertainties of the
SM mixing predictions it makes it difficult to identify NP contributions (clear hint
would be, if x is found to be much larger than y), however, measurements can still
provide useful and competitive constraints on many NP models, as will be discussed
later.

Study of CP violation in decays of charmed hadrons also holds the potential
for uncovering the NP. In the SM direct CP violation can occur in singly Cabbibo
suppressed (SCS; c → dud, c → sus) decays, but not in Cabbibo favored (CF;
c → sud) or doubly Cabbibo suppressed (DCS; c → dus) decays. This is due to the
fact that the final state particles in SCS decays contain at least one pair of quark and
anti-quark of the same flavor, which makes a contribution from penguin-type or box
amplitudes induced by virtual b-quarks possible in addition to the tree amplitudes.
However, the contribution of these second order amplitudes are strongly suppressed by
the small combination of CKM matrix elements VcbV ∗

ub. The CP violating asymmetry,
defined as

ACP =
Γ(D → f)− Γ(D → f)

Γ(D → f) + Γ(D → f)
(12)

is in the SM expected to be at most at the level of 0.1% [3], which is well below
the current experimental sensitivity. In some NP models the CP asymmetry can be
significantly enhanced and can be as large as 1% [4, 5, 6, 7]. It is thus widely believed
that the observation of large CP violation at the order of 1% in charm decays would
be an unambiguous sign for processes beyond the SM. Direct CP violation occurs
when the absolute value of the decay amplitude for D to decay to a final state f (Af)
is different from the one of corresponding CP -conjugated amplitude (Af). This can
happen if the decay amplitude can be separated into at least two parts (in case of
SCS decays the two corresponding SM amplitudes are the tree and the penguin-type)
associated with different weak and strong phases, Af = |A1|eiδ1eiφ1 + |A2|eiδ2eiφ2 ,
where φi represents weak phases that switch sign under CP -transformation, and δi
represent strong phases which are CP -invariant. This ensures that CP -conjugated

3

all possible states with ω = mD

B → K!+!− Factorization Katsumasa Nakayama
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Figure 1: Setup of the lattice calculation of the B→K!+!− amplitude through charmonium J/ψ resonances.

In order to calculate the amplitude, we integrate over the position of the weak effective Hamil-

tonian and define Iµ as

Iµ = e−[EK(ppp)−EB(kkk)]tJ
∫ tJ+Tb

tJ−Ta

dtH

∫

d3xxx

∫

d3yyy e−iqqq·xxx〈K(tK , ppp)|T
[

Jµ(tJ,xxx)Heff(tH ,yyy)
]

|B(0,kkk)〉.

(2.4)

The setup of the lattice calculation is shown in Figure 1. We introduce tH , tJ, tK ,Ta, and Tb to

identify the time for each states and operators.

We can rewrite this quantity using the complete set of the intermediate states, which can be de-

scribed by the spectral densities ρ1(E) for the states with strangeness, and ρ2(E) for those without

strangeness. Namely,

Iµ = −
∫ ∞

0
dE

ρ1(E)

2E

〈K(ppp)|Jµ(0)|E(kkk)〉〈E(kkk)|Heff(0)|B(kkk)〉
EB(kkk)−E

(

1− e(EB(kkk)−E)Ta

)

+
∫ ∞

0
dE

ρ2(E)

2E

〈K(ppp)|Heff(0)|E(ppp)〉〈E(ppp)|Jµ (0)|B(kkk)〉
E −EK(ppp)

(

1− e−(E−EK(ppp))Tb

)

. (2.5)

In this representation, the Ta,b → ∞ limit of Iµ can be identified as the amplitude,

A(q2) =−i lim
Ta,b→∞

Iµ(Ta,Tb,kkk, ppp). (2.6)

In order that the integral (2.5) stays finite, the energy of the intermediate state plays an essential

role. Since E −EK(ppp)> 0 is always satisfied, e−(E−EK(ppp))Tb can be ignored in the Tb → ∞ limit. On

the other hand, EB(kkk)−E < 0 is not always satisfied, depending on the intermediate energy and

the term e(EB(kkk)−E)Ta may diverge in the limit of large Ta. At the physical point of the quark masses,

this artificial divergence can be hardly removed, since the number of such intermediate states is

large. In this study, we set the b-quark mass smaller than that of the physical value in order to avoid

this problem. Since the energy of the intermediate state E is bounded by the ground state energy

of the K and J/ψ meson, we choose the b-quark mass to realize the condition, EB < EJ/ψ +EK.

With this unphysical b-quark mass, we can define the decay amplitude from the four-point

correlators. In this work, however, we test the factorization approximation as the first step before

proceeding to the extraction of the decay amplitude.

2

all possible states with ω = mB

To select the states that are otherwise inaccessible 
due to Maiani-Testa.



Towards DWQ@50
Be prepared; Not too distant future! 

• InteresOng new applicaOons, even if only feasible with much 
larger lasces and staOsOcs. 

• Inclusive B decays, …, inelasOc νN scaSering (see Yoo’s talk on Thursday).  

• Experiments are there, or under construcOon. (LHC is accumulaOng 
more data; HL-LHC will be from 2027. Belle II sOll at the beginning, runs 
Oll 2031 at least; DUNE will run from 2027.) 

• (Challenging) SuggesOons are welcome especially from exp colleagues. 


