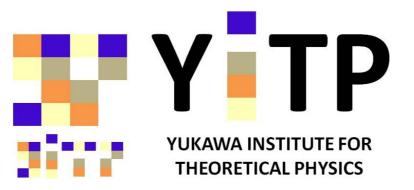
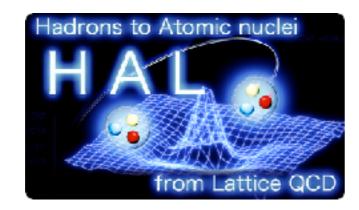
Recent results for hadron interactions in the HAL QCD method

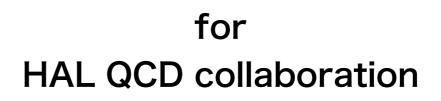
Sinya Aoki

Center for Gravitational Physics,

Yukawa Institute for Theoretical Physics, Kyoto University







BNL-HET & RBRC Joint workshop "DWQCD@25" 13-18 December 2021, Virtual Event

I. Introduction

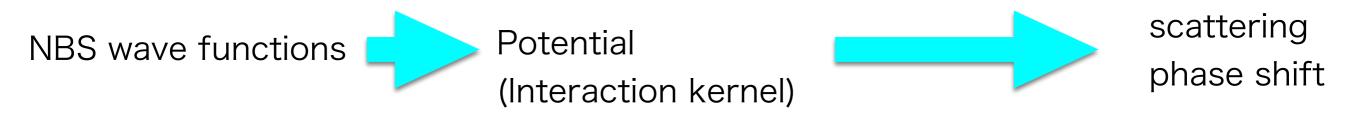
Hadron interactions in lattice QCD

Finite volume method

spectra of two hadrons in finite box

scattering phase shift

Luescher's finite volume formula



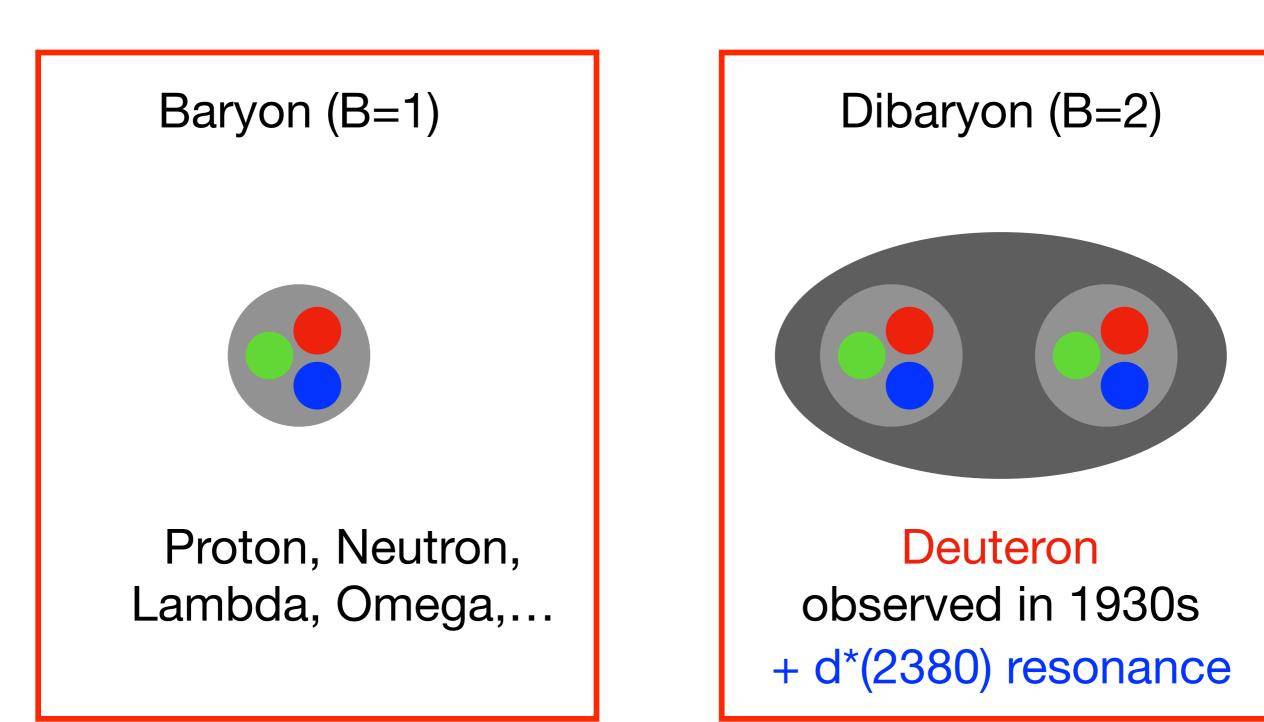
Schrodinger equation

Today's topics

- I. Introduction
- II. Heavy dibaryons
- III. Resonances in the HAL QCD method
- IV. HAL QCD potentials in the moving systems
- V. Summary and discussions

II. Heavy dibaryons

Y. Lyu, H. Tong, T. Sugiura, S. Aoki, T. Doi, T. Hatsuda, J. Meng, T. Miyamoto, "Dibaryon with highest charm number near unitarity from lattice QCD", Phys. Rev. Lett. 127 (2021) 072003 (arXiv:2102.0081).



Dibaryon = two baryon bound state or resonance

Previous results

H dibaryon

T. Inoue et al. (HAL QCD Coll.), PRL106(2011)162002

K. Sasaki et al. (HAL QCD Coll.), NPA106(2020)121737

$\Delta\Delta$ dibaryons

S. Gongyo et al. (HAL QCD Coll.), PLB811(2020)135935

$N\Omega$ dibaryons

F. Etminan et al. (HAL QCD Coll.), NPA928(2014)89

T. Iritani et al. (HAL QCD Coll.), PLB792(2019)284

flavor SU(3) limit physical point, $\Lambda\Lambda$, $N\Xi$

flavor SU(3) limit, *d**(2380)

 $m_{\pi} \simeq 875 \text{ MeV}$

physical point

$\Omega\Omega$ dibaryons

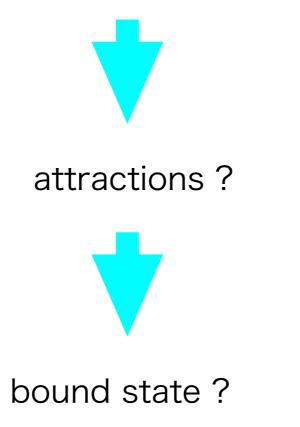
M. Yamada et al. (HAL QCD Coll.), PTEP 7(2015)187 $m_{\pi} \simeq 700 \text{ MeV}$ S. Gongyo et al. (HAL QCD Coll.), PRL 120(2018)212001 physical point

$\Omega_{ccc}\Omega_{ccc}$ dibaryons

Y. Lyu, et al., Pays. Rev. Lett. 127 (2021) 072003 (arXiv:2102.0081)

 $\Omega(ccc)$: triply charmed baryon, stable against strong decay, mass/EM form factor

 $\Omega(ccc)\Omega(ccc)$: S-wave& zero total spin, then no Pauli exclusion



HAL QCD method

R-correlator
$$R(\mathbf{r}, t > 0) = \langle 0 | \Omega_{ccc}(\mathbf{r}, t) \Omega_{ccc}(\mathbf{0}, t) \overline{\mathcal{J}}(0) | 0 \rangle / e^{-2m_{\Omega_{ccc}}t}$$
$$= \sum_{n} A_{n} \psi_{n}(\mathbf{r}) e^{-(\Delta W_{n})t} + O(e^{-(\Delta E^{*})t}),$$

non-local potential

$$\left(\frac{1}{4m_{\Omega_{ccc}}}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right)R(\boldsymbol{r}, t) = \int d\boldsymbol{r}' U(\boldsymbol{r}, \boldsymbol{r}')R(\boldsymbol{r}', t),$$

derivative expansion $U(\mathbf{r}, \mathbf{r}') = V(\mathbf{r})\delta^{(3)}(\mathbf{r} - \mathbf{r}') + \cdots$

local potential

$$V(r) = R^{-1}(\boldsymbol{r}, t) \left(\frac{1}{4m_{\Omega_{ccc}}} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \right) R(\boldsymbol{r}, t).$$

at reasonably large t

Lattice setup

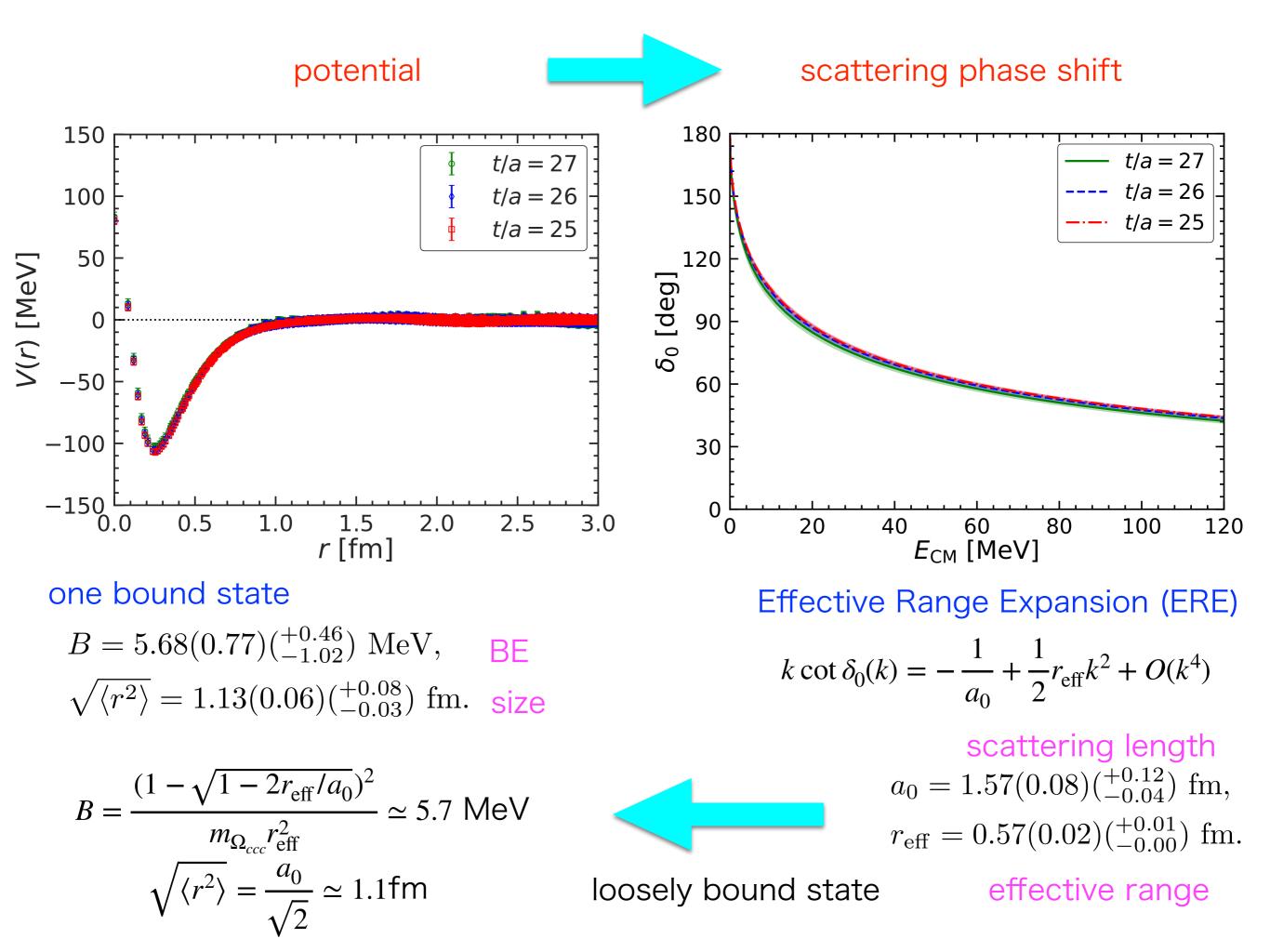
2+1 flavor gauge configuration on 96⁴ lattice with Iwasaki gauge + NP O(a) improved clover quark $a \simeq 0.0846$ fm, $m_{\pi} \simeq 146$ MeV, $m_K \simeq 525$ MeV (near physical point)

 $= 0.0010 \text{ m}_{\pi} - 110 \text{ m}_{0} \text{ , } m_{K} - 525 \text{ m}_{0} \text{ v}$ (nour pr

 $La \simeq 8.1 \text{ fm}$

(quenched) charm quark mass

	$(m_{\eta_c} + 3m_{J/\Psi})/4 \; [{\rm MeV}]$	$m_{\Omega_{ccc}}$ [MeV]
set 1	3096.6(0.3)	4837.3(0.7)
set 2	3051.4(0.3)	4770.2(0.7)
Interpolation	3068.5(0.3)	4795.6(0.7)
Ēxp.	3068.5(0.1)	



Coulomb repulsion

charge distribution inside Ω_{ccc}

$$\rho(r) = \frac{12\sqrt{6}}{\pi r_d^3} \exp\left[-\frac{2\sqrt{6}r}{r_d}\right]$$

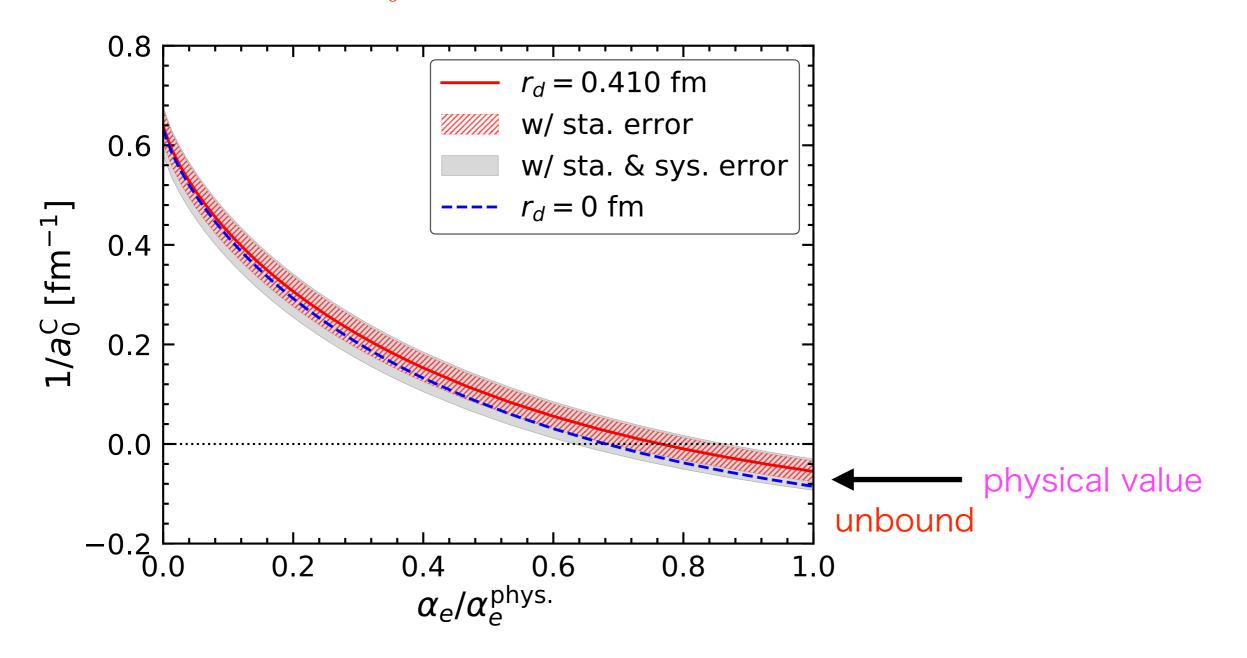
charge radius of Ω_{ccc} $r_d = 0.410(6)$ fm

K. U. Can, et al., Phys. Rev. D92 (2015) 114515.

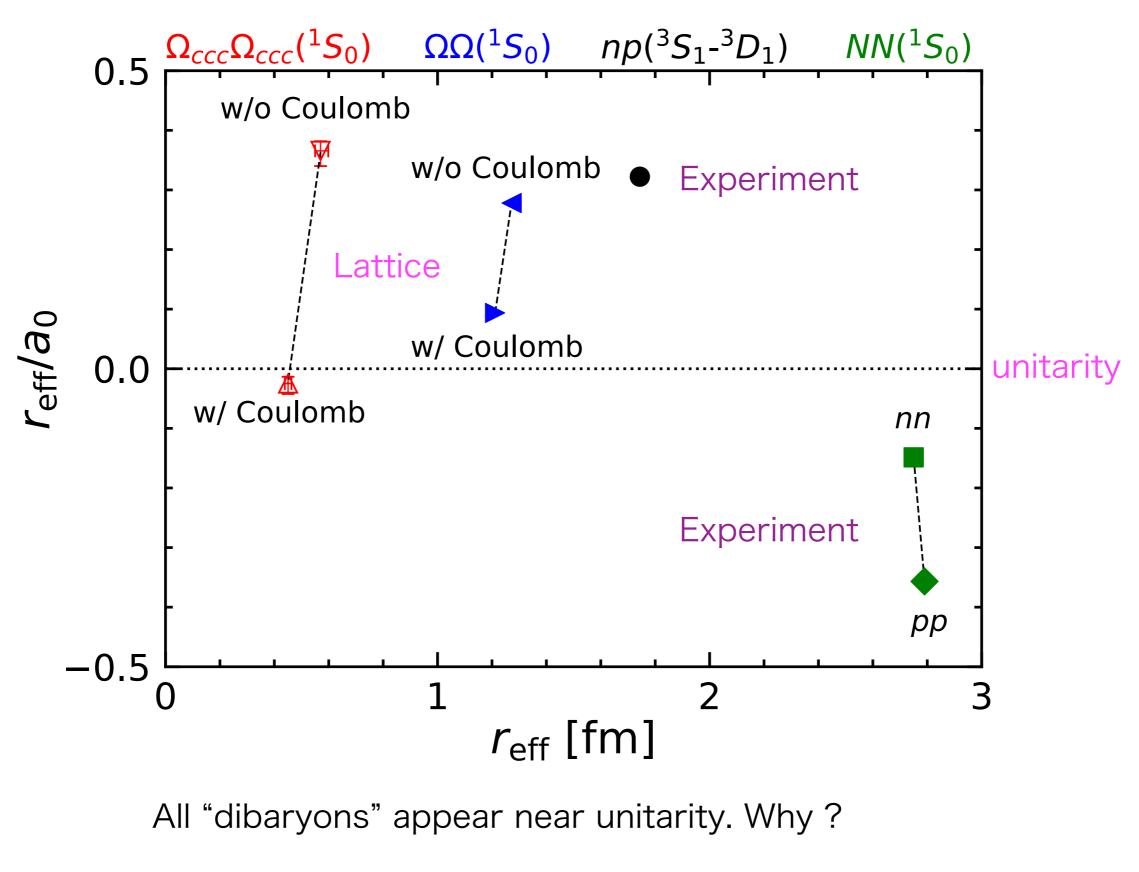
Coulomb potential between two Ω_{ccc} 's

$$V^{\text{Coulomb}}(r) = \alpha_e \iint d^3 r_1 d^3 r_2 \frac{\rho(r_1)\rho(|\vec{r_2} - \vec{r}|)}{|\vec{r_1} - \vec{r_2}|}$$

 $1/a_0^C$ VS. $\alpha_e/\alpha_e^{\text{phys.}}$



 $a_0^{\rm C} = -19(7)\binom{+7}{-6}$ fm, unitary region $r_{\rm eff}^{\rm C} = 0.45(0.01)\binom{+0.01}{-0.00}$ fm. $r_{\rm eff}^{\rm C}/a_0^{\rm C} = -0.024(0.010)\binom{+001}{-0.00}$ fm Comparison with other dibaryons



 $\Omega_{ccc}\Omega_{ccc}({}^{1}S_{0})$ dibaryon is closest to unitarity among these.

III. Resonance in the HAL QCD method

Y. Akahoshi, S. Aoki, T. Doi, "Emergence of ρ resonance from the HAL QCD potential in lattice QCD", Phys. Rev. D104 (2021) 054510 (arXiv:2106.08175).

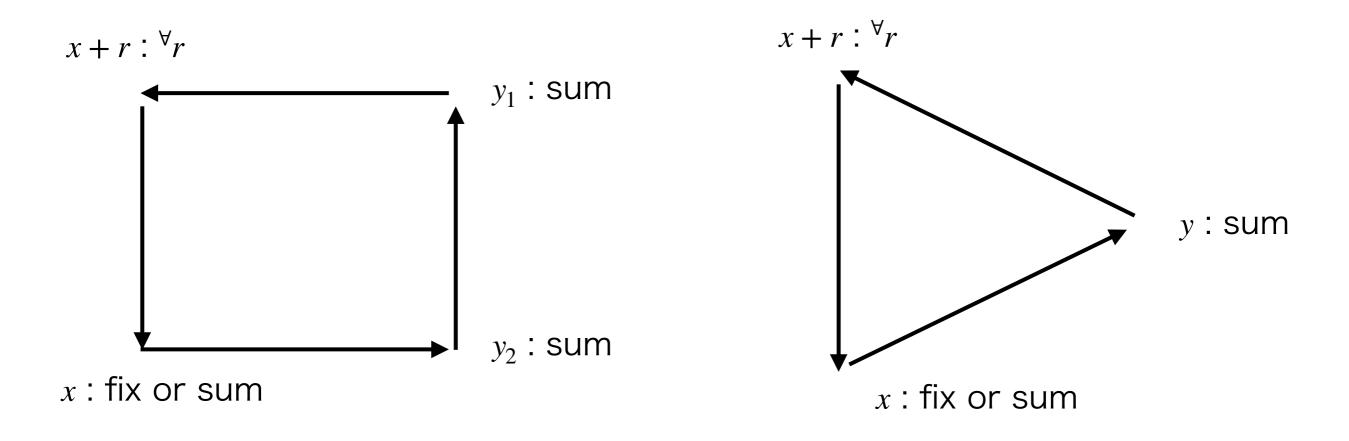
ρ resonance

 ρ meson is a resonance of $\pi\pi$ scattering

Can we reproduce ρ resonance form $I = 1 \pi \pi$ HAL QCD potential ?

Obstructions/Difficulties

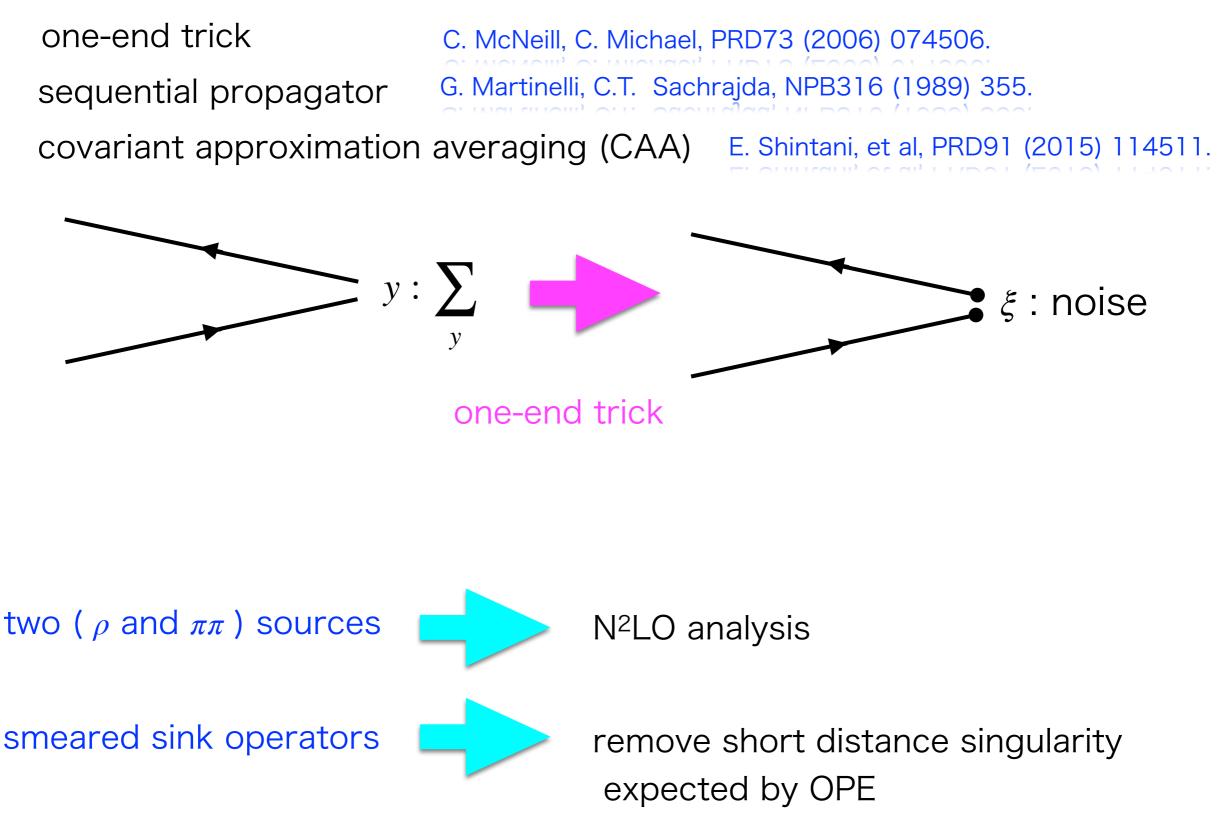
"box" diagram for $I = 1 \pi \pi$ system



large numerical cost/noises

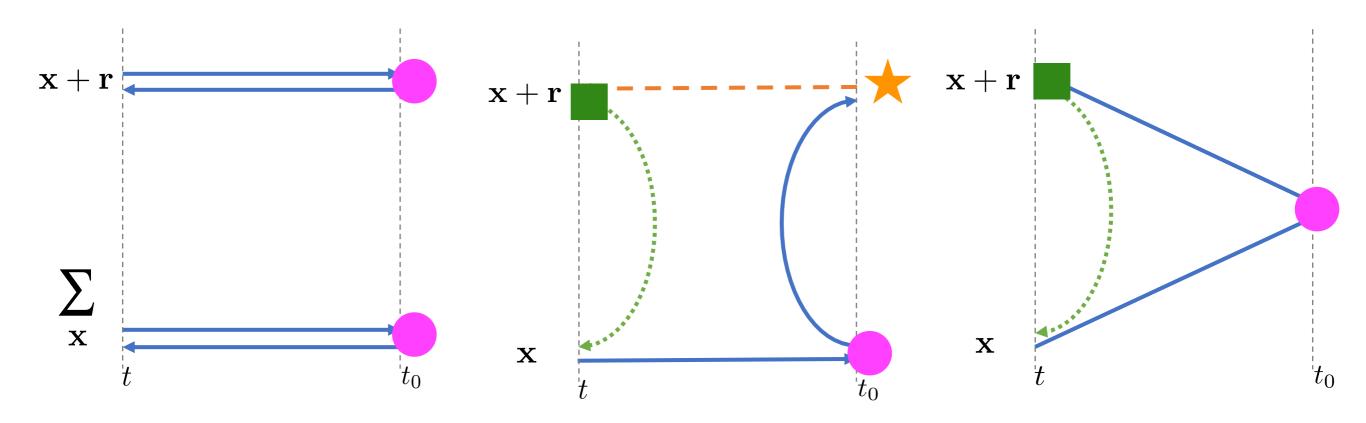
Our strategy

3 techniques for all-to-all propagators are combined.



Diagrams

CAA



one-end trick summation over space

t sequential source summation over space

fixed point in space

Lattice setup

2+1 flavor gauge configuration on $32^3 \times 64$ lattice with Iwasaki gauge + NP O(a) improved clover quark

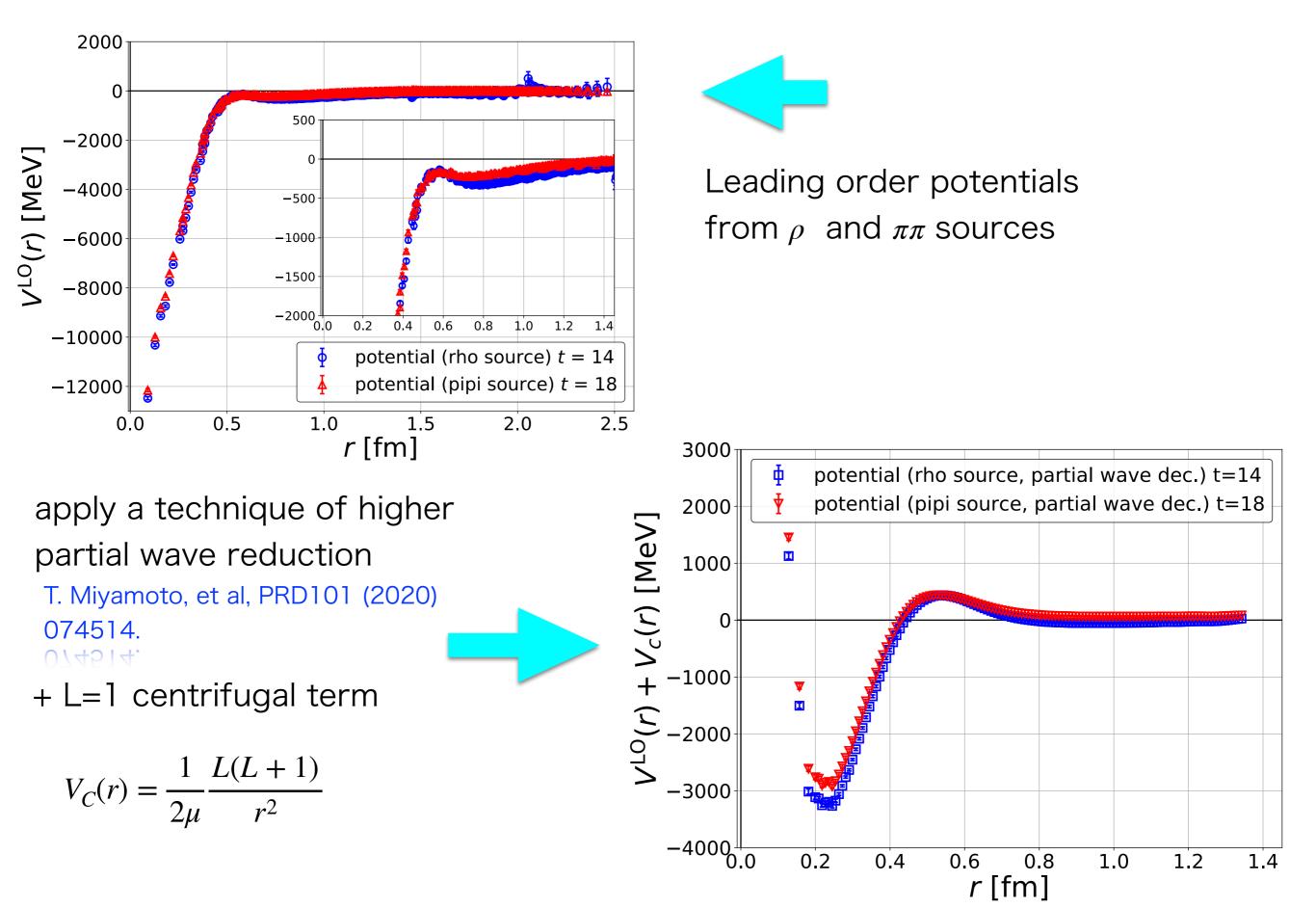
 $a \simeq 0.0907 \text{ fm}, m_{\pi} \simeq 411 \text{ MeV}, m_{\rho} \simeq 892 \text{ MeV}$ (PACS-CS configurations)

 $La \simeq 2.9 \text{ fm}$

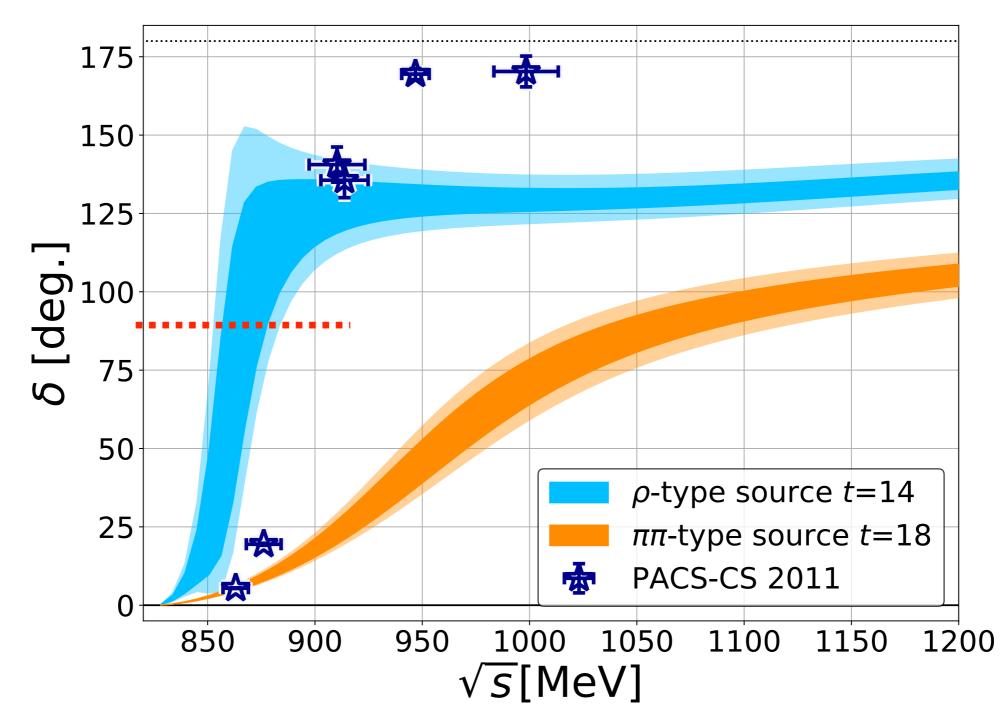
statistics

Source type	Scheme	$N_{\rm conf}$ (#. of time slice ave.)	Stat. error
$\pi\pi$ -type	equal-time, smeared-sink	100(64)	jackknife with bin–size 5
ho-type	equal-time, smeared-sink	200(64)	jackknife with bin–size 10

Results



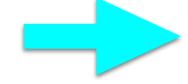
phase shift



resonant behaviors are seen.

results from two sources differ.

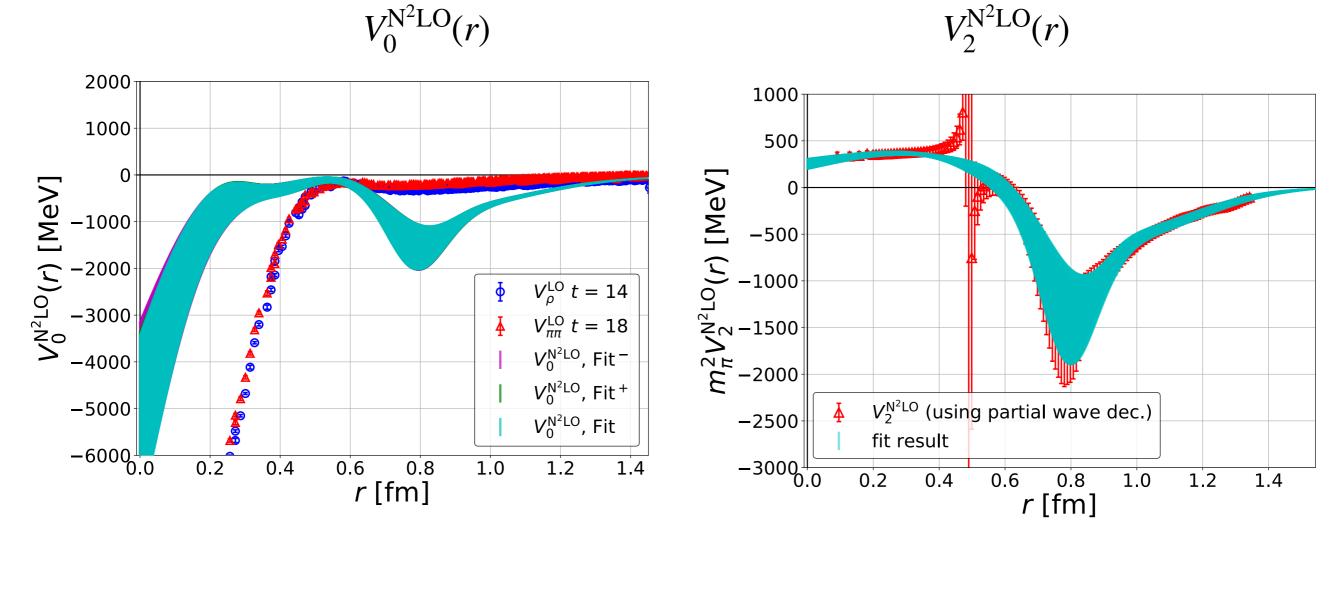
they disagree with the FV spectra.



N²LO analysis is mandatory.

N²LO potential

$$U^{\mathrm{N}^{2}\mathrm{LO}}(\mathbf{r},\mathbf{r}') = \left(V_{0}^{\mathrm{N}^{2}\mathrm{LO}}(r) + V_{2}^{\mathrm{N}^{2}\mathrm{LO}}(r)\nabla^{2}\right)\delta(\mathbf{r}-\mathbf{r}')$$



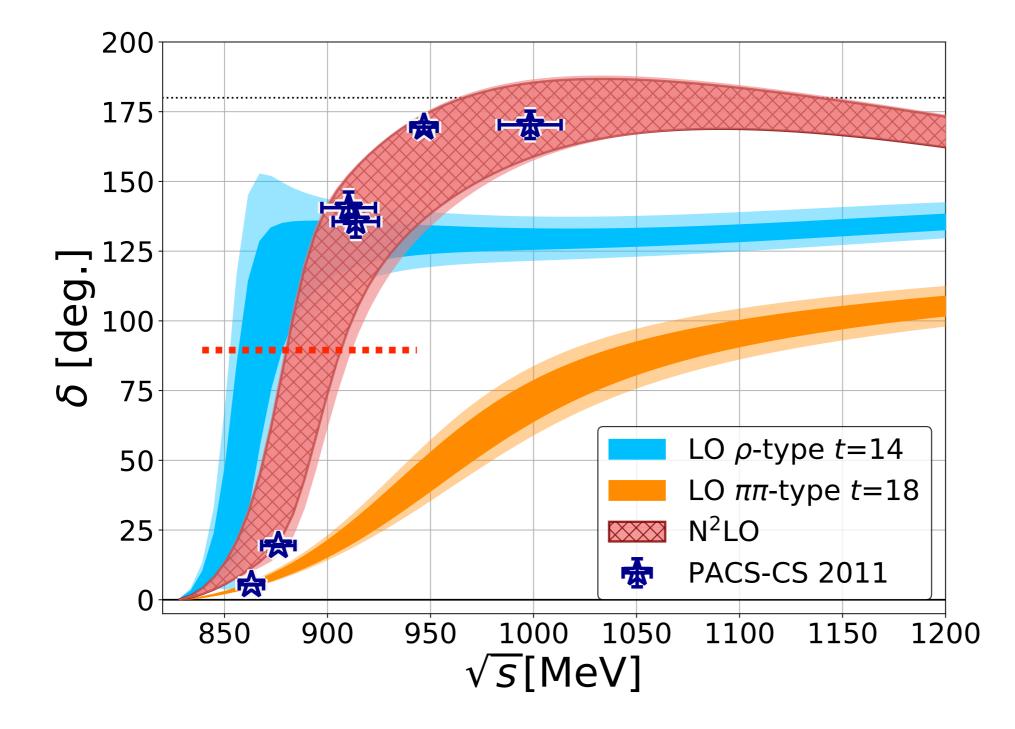
 $V_0^{\rm N^2LO}(r)$ is obtained.

 $V_2^{N^2LO}(r)$ with large noises is fitted first.

cf. a singularity could be included.

S. Aoki, K. Yazaki, arXiv:2109.07665(hep-lat).

N²LO phase shift



N2LO result almost agrees with the PACS-CS by the FV method.

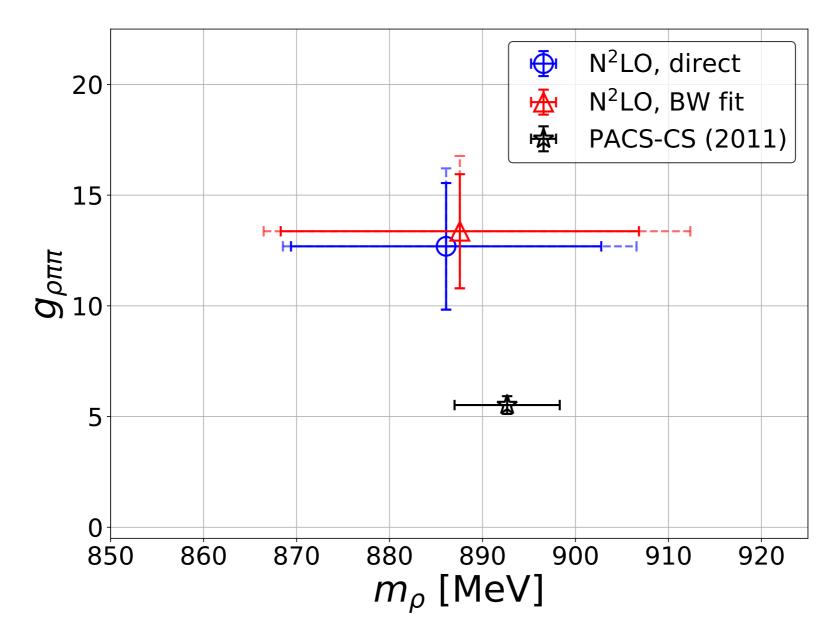
ρ resonance parameters

Breit-Wigner fit $\frac{k^3}{2}$

$$\frac{k^3 \cot \delta_1(k)}{\sqrt{s}} = \frac{6\pi}{g_{\rho\pi\pi}^2} (m_\rho^2 - s),$$

both agree well.

pole of the S-matrix from N²LO potential



 m_{ρ} from potential agrees with the PACS-CS (FV), while $g_{\rho\pi\pi}$ is much larger.

Probably, the lack of low s states in the center of mass.

IV. HAL QCD potentials in the moving system

Y. Akahori and S. Aoki, in preparation.

σ resonances

 σ resonance from $\pi\pi$ scattering in the center of mass system

 $\langle 0|\pi(t)\pi(t)\sigma(0)|0\rangle \simeq \langle 0|\pi(t)\pi(t)|0\rangle \langle 0|\sigma(0)|0\rangle + e^{-E_{\pi\pi}t} \langle 0|\pi(t)\pi(t)|\pi\pi\rangle \langle \pi\pi|\sigma(0)|0\rangle$ vacuum states dominates signals
non-zero total momentum (boosted system)

 $\langle 0|\pi(t)\pi(t)\sigma(0)|0\rangle \simeq e^{-E_{\pi\pi}t}\langle 0|\pi(t)\pi(t)|\pi\pi\rangle\langle\pi\pi|\sigma(0)|0\rangle + \cdots$

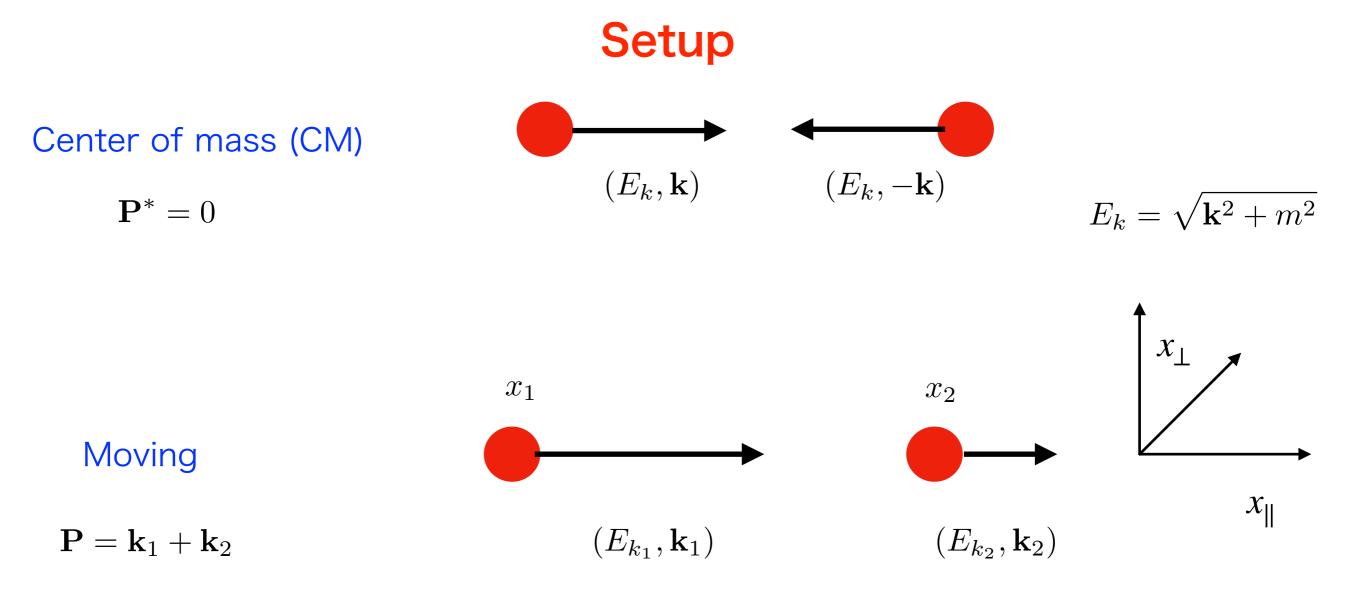
vacuum contribution is absent

HAL QCD method was formulated for a boosted system. S. Aoki, Lattice 2019.

Recently, numerical test for $I = 2 \pi \pi$ system has been performed.

IV-1. Theory

S. Aoki, lattice 2019.



Lorentz transformation

$$\mathbf{P}^* = \gamma(\mathbf{P} - \mathbf{v}W) = 0 \qquad \qquad W = \sqrt{\mathbf{k}_1^2 + m^2} + \sqrt{\mathbf{k}_2^2 + m^2} \qquad \qquad \gamma := \frac{1}{\sqrt{1 - \mathbf{v}^2}}$$

$$P \cdot X = P^* \cdot X^*$$
 $X := \frac{x_1 + x_2}{2}, x := x_1 - x_2$

HAL QCD potential from boosted NBS wave function

IV-2. Numerical results

 $I = 2 \pi \pi$ potential

Akahoshi and Aoki, in preparation.

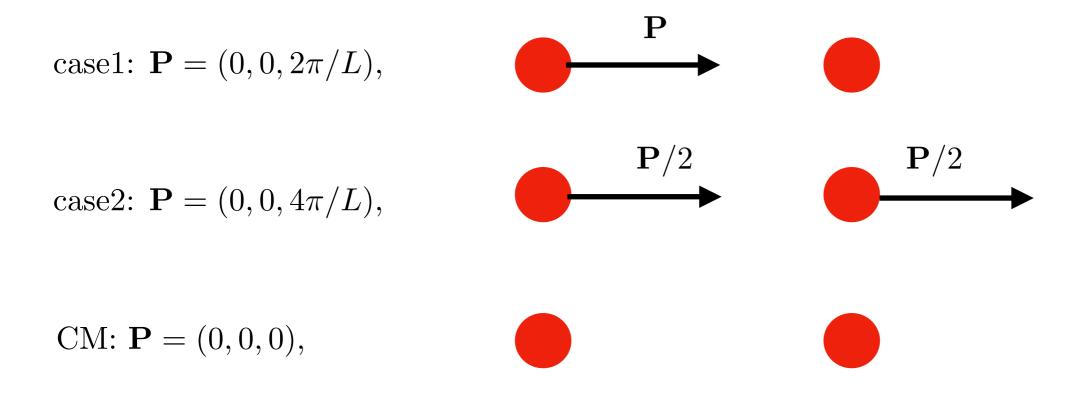
Numerical setup

2+1 flavor CP-PACS configurations on a $32^3\times 64$ latt
tice

Iwasaki gauge action and non-perturbatively improved Wilson quark action

 $a \simeq 0.0907 \text{ fm}, m_{\pi} \simeq 700 \text{ MeV}$

smeared quark source

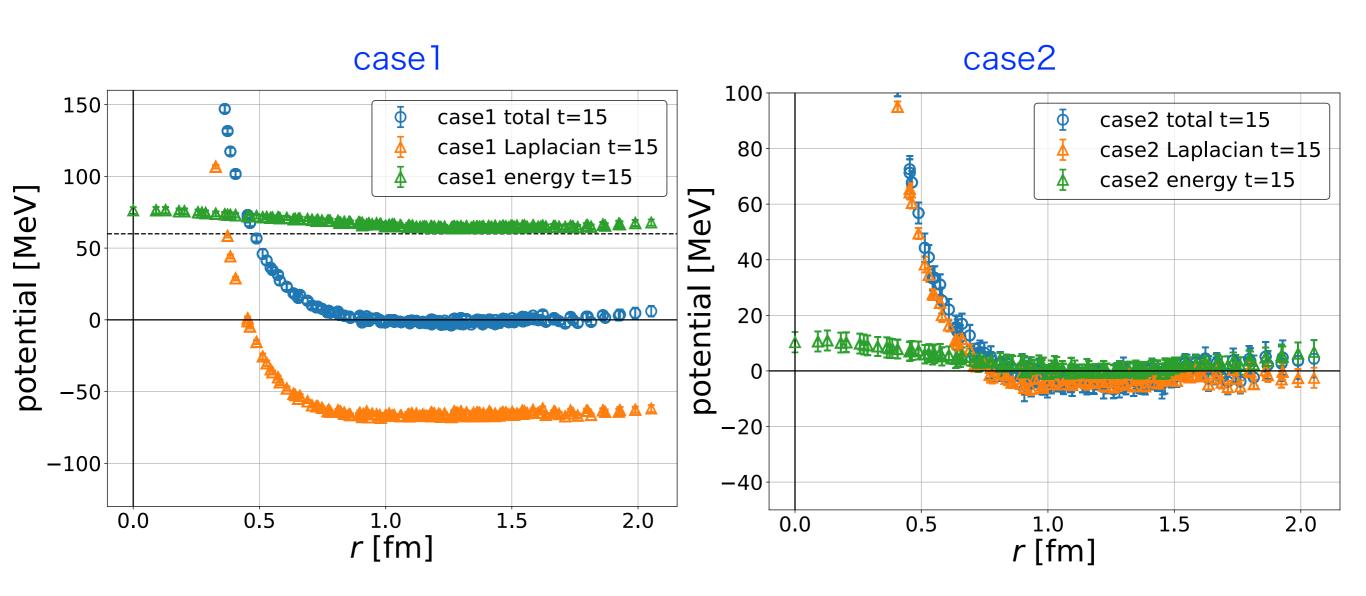


Potentials (breakup)

$$V_{x^{*4}=0}^{\text{LO}}(\mathbf{x}_{\perp}) = \left. \frac{(L_{\perp} + L_{\parallel})(\mathbf{x}, x^4, X^4)}{mG(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{G(\mathbf{x}, x^4, X^4)} \right|_{x^4=0, \mathbf{x}_{\parallel}=0} + \left. \frac{E(\mathbf{x}, x^4, X^4)}{$$

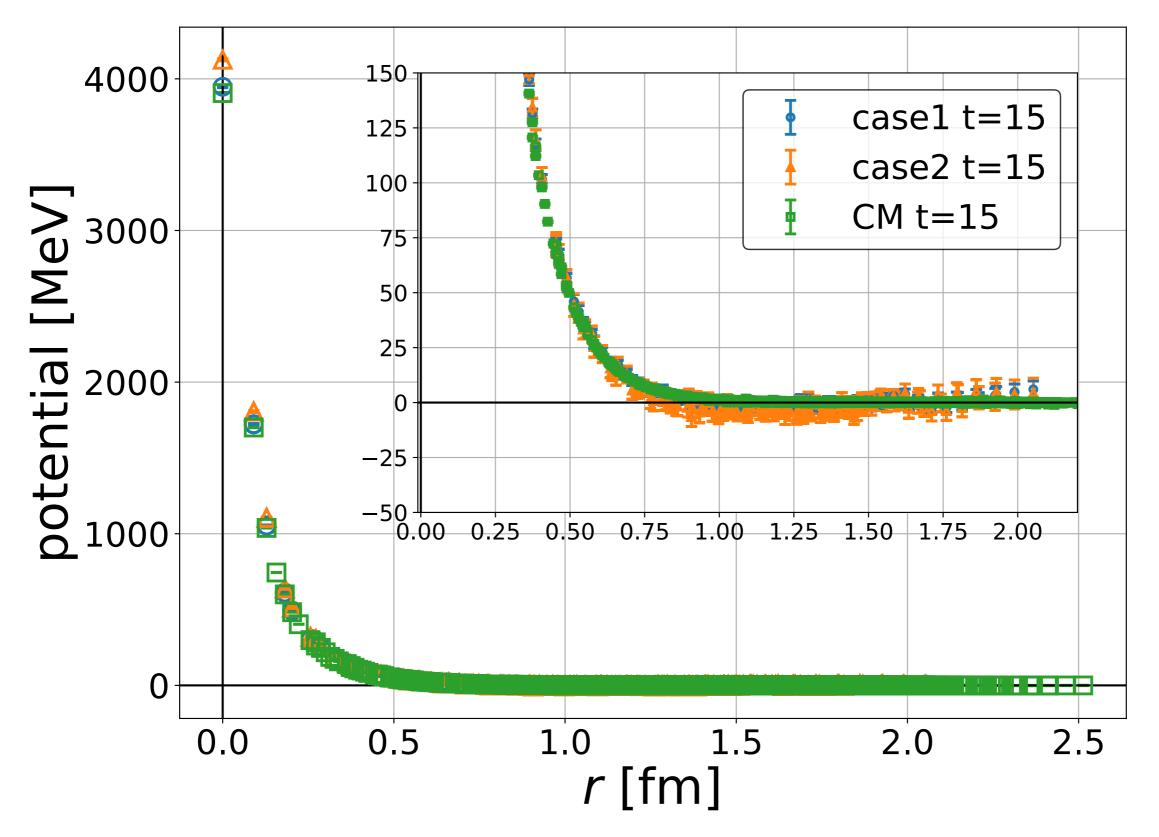
energy

Laplacian



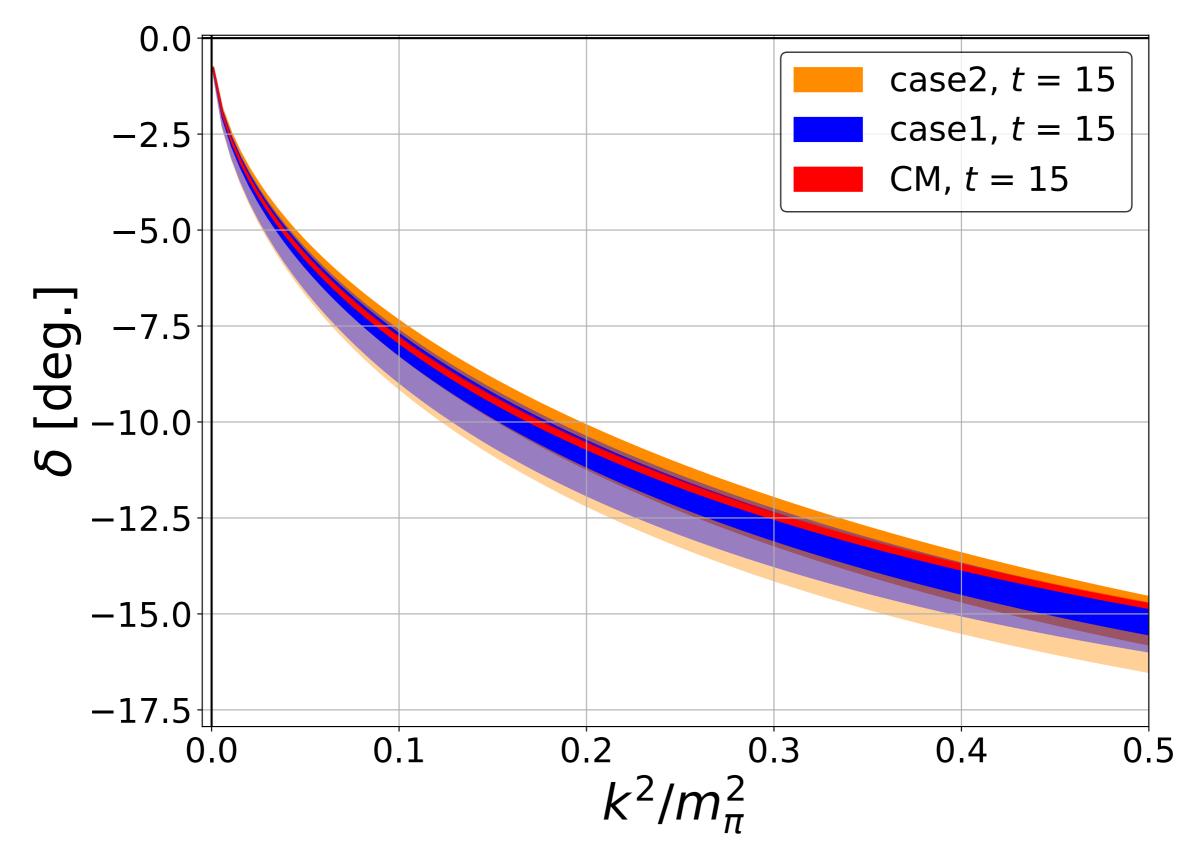
 \simeq CM

Potentials (comparison)



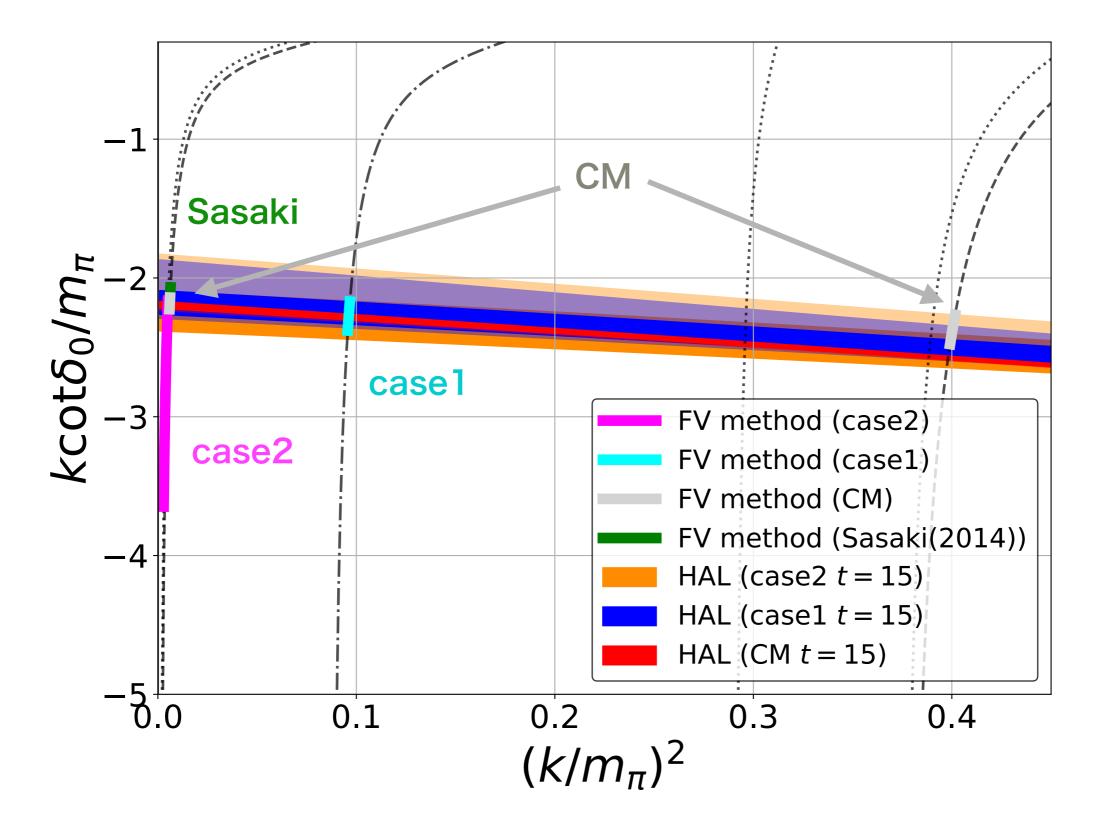
They are consistent except at short distances, though boosted ones are noisier.

Scattering phase shifts



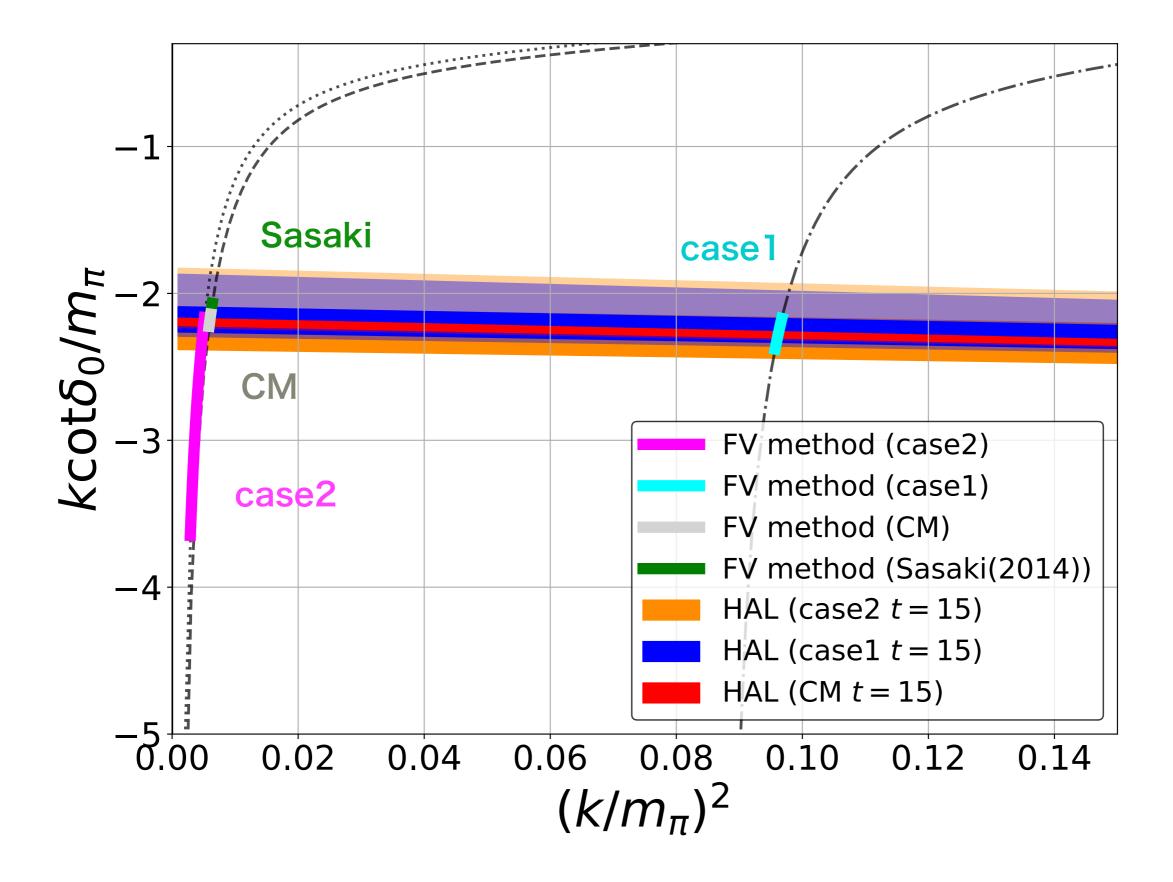
All three cases gives consistent results.

Comparison with finite volume method



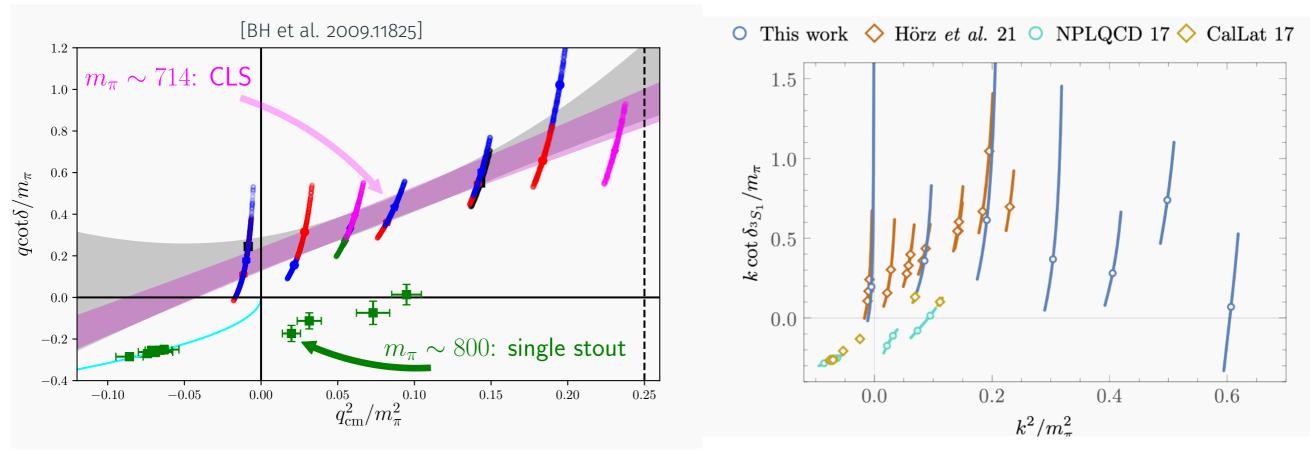
HAL QCD potentials with non-zero momentum work !

Comparison at low energies



V. Summary and Discussions

 HAL QCD method provides useful tools to investigate not only dibaryons but also hadron resonates such as ρ meson.

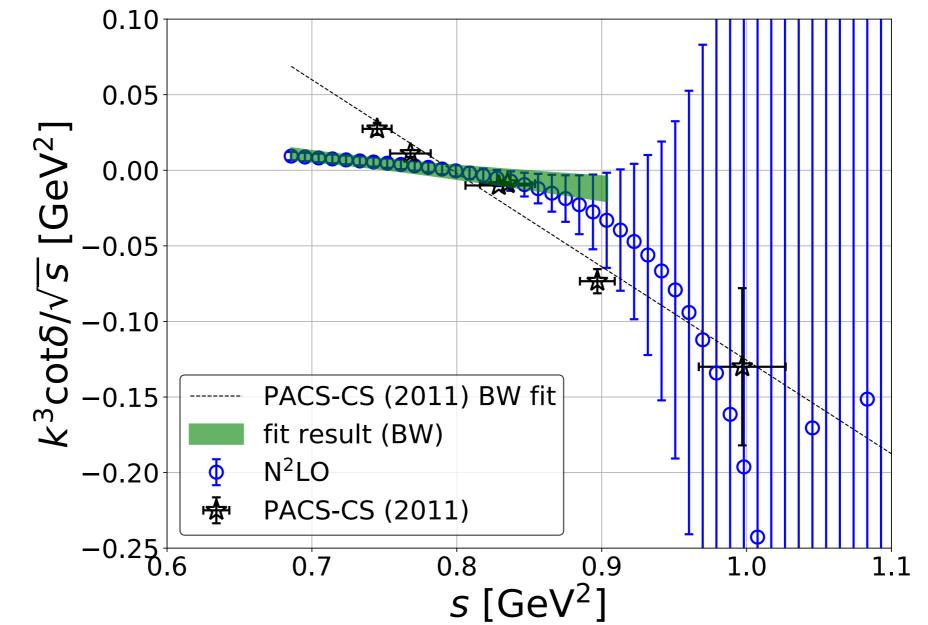


review by B. Hoerz in Lattice2021

talk by M. Wagman in Lattice2021

Backup

Why $g_{\rho\pi\pi}$ is larger ?



 $\frac{k^3 \cot \delta_1(k)}{\sqrt{s}} = \frac{6\pi}{g_{\rho\pi\pi}^2} (m_{\rho}^2 - s),$

slope is smaller for the potential result.

Probably, the lack of low *s* states in the center of mass causes this behavior.

Time dependent method

$$\begin{split} \mathsf{CM} & \left(-H_0 - \partial_{X^{*4}} + \frac{1}{4m} \partial_{X^{*4}}^2\right) R(\mathbf{x}^*, x^{*4}, X^{*4}) = V_{x^{*4}}^{\mathrm{LO}}(\mathbf{x}^*) R(\mathbf{x}^*, x^{*4}, X^{*4}) \\ & R(\mathbf{x}^*, x^{*4}, X^{*4}) \coloneqq \sum_n B_n \varphi_{W_n}(x) e^{-(W_n^* - 2m)X^{*4}} + \cdots \\ & \mathsf{NBS} \end{split}$$

$$\begin{aligned} \mathsf{Moving} & R(\mathbf{x}, x^4, X^4) \simeq \sum_n B_n \varphi_{W_n}(x) e^{-(W_n - 2m)X^4} \\ & V_{x^{*4}=0}^{\mathrm{LO}}(\mathbf{x}_{\perp}) = \frac{\left(L_{\perp} + L_{\parallel} + mE\right) \left(\mathbf{x}, x^4, X^4\right)}{mG(\mathbf{x}, x^4, X^4)} \bigg|_{x^4 = 0, \mathbf{x}_{\parallel} = 0} \\ & G(\mathbf{x}, x^4, X^4) = \left((\partial_{X^4} - 2m)^2 - \mathbf{P}^2\right) R(\mathbf{x}, x^4, X^4), \\ & E(\mathbf{x}, x^4, X^4) = \left[\partial_{X^4}^2 / 4m - \partial_{X^4} - \mathbf{P}^2 / 4m\right] G(\mathbf{x}, x^4, X^4), \\ & L_{\perp}(\mathbf{x}, x^4, X^4) = \left(-(\partial_{X^4} - 2m)\nabla_{\parallel} + i\mathbf{P}\partial_{x^4}\right)^2 R(\mathbf{x}, x^4, X^4). \end{aligned}$$

Finite volume spectra

