Finite Temperature Fine Lattice Simulation with DWQs

Yasumichi Aoki

RIKEN Center for Computational Science (R-CCS)

DWQ@25 December 16, 2021

Contributors of main results

S. Aoki¹, Y. Aoki²(presenter), H. Fukaya³,

S. Hashimoto⁴, I. Kanamori², T. Kaneko⁴, Y. Nakamura², Y. Zhang²

1: YITP, 2: R-CCS, 3: Osaka, 4: KEK

acknowledgements

- Codes used:
 - HMC
 - Grid / Regensburg (A64FX-tuned)
 - Measurements:
 - Hadrons / Grid
 - BQCD
 - Bridge++
- MEXT program

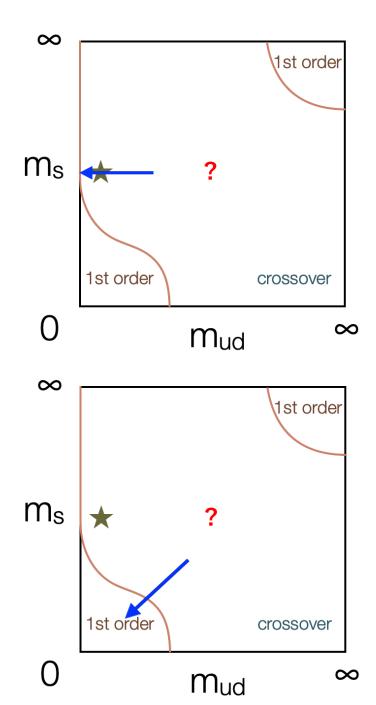
成果創出加速プログラム

Program for Promoting Researches on the Supercomputer Fugaku

- Simulation for basic science: from fundamental laws of particles to creation of nuclei
- Computers
 - Oakforest-PACS
 - Polaire and Grand Chariot at Hokkaido University
 - supercomputer Fugaku provided by the RIKEN Center for Computational Science

Intro

- N_f=2+1 thermodynamic property
 - through chiral symmetric formulation
 - Order of the transition
 - (pseudo) critical temperature
 - Location of the phase boundary
 - Near the physical point
- Chiral symmetric formulation
 - Ideal to treat flavor SU(2) and U(1)_A properly
 - Domain wall fermion (DWF): practical choice
- DWF and chirality
 - Fine lattice needed
 - Aiming for a < 0.08 fm (eventually)
 - Current search domain: 0.08 < a < 0.12fm



N_f=2 Möbius DWF

- Lessons learned
 - Chiral symmetry important for discussing
 - chiral, U(1)_A problems
 - Reweighting to overlap essential
 - For reweighting to be successful for DW OV
 - Fine lattice needed (efficiency of reweighting): $a \leq 0.1$ fm
 - Smoothness of configuration & smallness of m_{res}
 - For reweighting to be successful in general
 - Large volume is problematic
 - It may not work for further finer lattices
- Expectation
 - (Finer the lattice, smaller m_{res})
 - DWF itself eventually becomes good enough
 - Except for a few very tricky quantities → detailed investigation needed

$N_f=2$ Möbius DWF

- Action
 - Tree-level improved Symanzik gauge
 - stout-smeared, scale-factor 2 Shamir DWF
- So far studied
 - U(1)_A and chiral symmetry
 - Topological charge
 - Chiral susceptibility
 - Spatial correlation of color singlet channels
- Simulation setup
 - Fix β
 - Fix N_t
 - Vary m

$$N_f = 2 + 1$$

- Action: same as $N_f=2$
- Simulation setup (we follow most of the simulations by now)
 - Fix β
 - Fix N_t
 - Fix m_s^{latt} near physical
 - Vary m_l^{latt}
 - Aiming to understand the role of chiral symmetry, $U(1)_A$, topology
- • new setup: fix physics and vary T in this study
 - Line of Constant Physics
 - Aiming to study the (pseudo) criticality w/ fixed physics

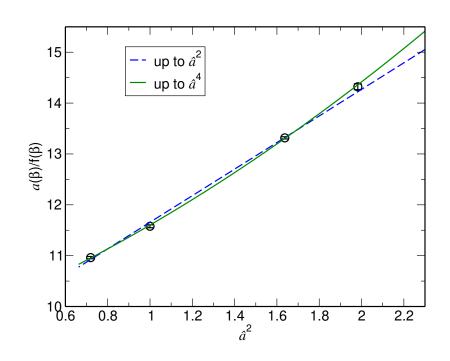
$N_f=2+1$ Möbius DWF

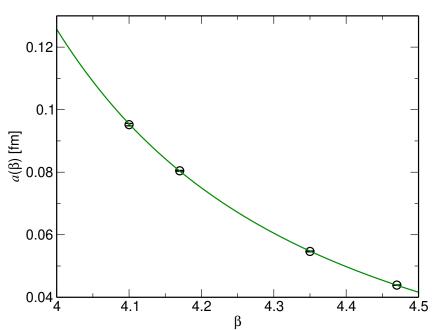
- $a(\beta)$
- Using
 - JLQCD T=0 lattices with t_0 meas.
 - a=0.080, 0.055, 0.044 fm (published)
 - a=0.095 fm (pilot study)
 - Parameterization of Edwards et al (1998)

•
$$a = c_0 f(g^2)(1 + c_2 \hat{a}(g)^2 + c_4 \hat{a}(g)^4).$$

•
$$\hat{a}(g)^2 \equiv [f(g^2)/f(g_0^2)]^2$$
,
 $f(g^2) \equiv (b_0 g^2)^{-b_1/2b_0^2} \exp\left(-\frac{1}{2b_0 g^2}\right)$,
 $b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}N_f\right)$, $b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38N_f}{3}\right)$,

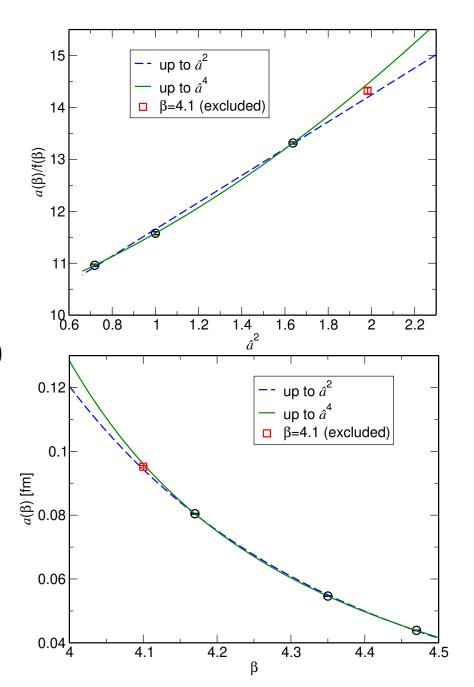
• Fit to \hat{a}^4 works well





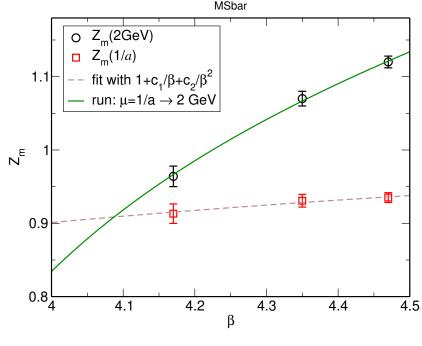
$N_f=2+1$ Möbius DWF

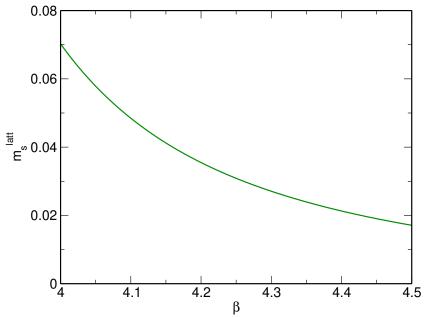
- $a(\beta)$ precision over the range
- Test excluding coarsest one
 - 1 % diff: fit <-> measurement @ β =4.1
 - Difference $O(\hat{a}^4) O(\hat{a}^2)$ fits: good measure of error (maybe overestimating)
- Full range fit
 - @ $\beta = 4.0$ error is ~ few %
 - The fit may be regarded as renormalized trajectory
 - Continuum limit will absorb the error

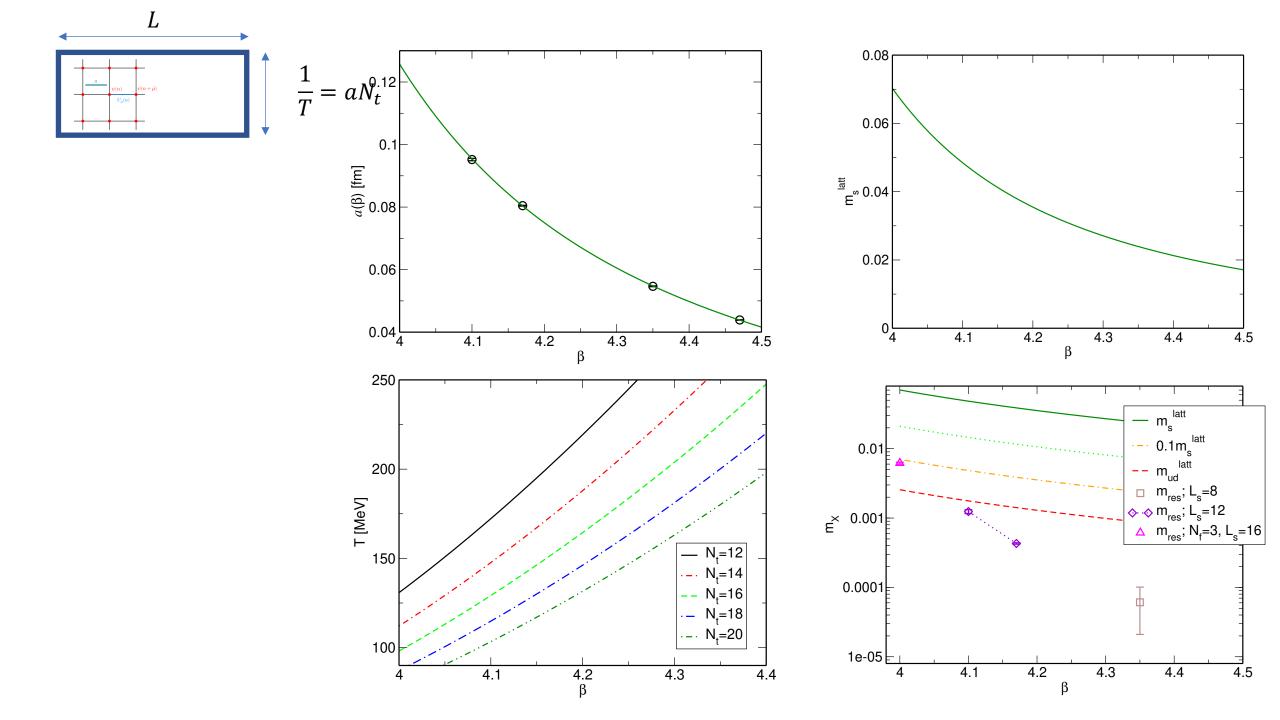


N_f=2+1 Möbius DWF LCP

- Quark mass as function of β [fixed physics]
- We use quark mass input
 - $m_s = 92 \, MeV$ (MSb 2GeV)
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
 - $m_q^R = Z_m \cdot (am_q^{latt}) \cdot a^{-1}(\beta)$
- Parameterizing $Z_m(\beta)$
 - Take $Z_m(2GeV)$ w/ NPR Tomii et al 2016
 - $Z_m(2GeV) \rightarrow Z_m(a^{-1})$ NNNLO pert.
 - No (large) $\log(a\mu)$
 - Should behave like $1 + d_1g^2 + d_2g^4 + \cdots$
 - Fit $Z_m(a^{-1})$ with $1 + c_1\beta^{-1} + c_2\beta^{-2}$
 - $Z_m(a^{-1}) \to Z_m(2GeV)$ NNNLO pert.

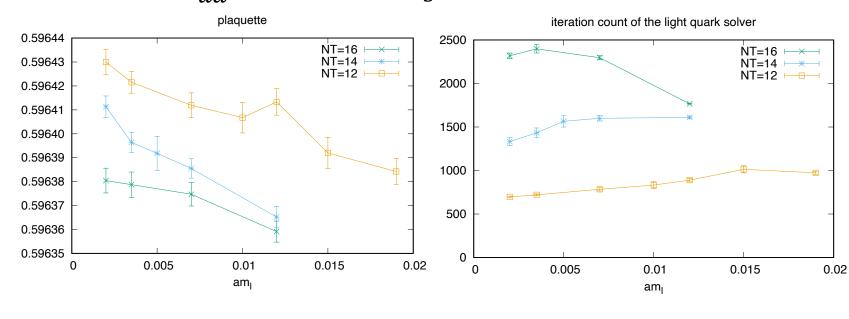


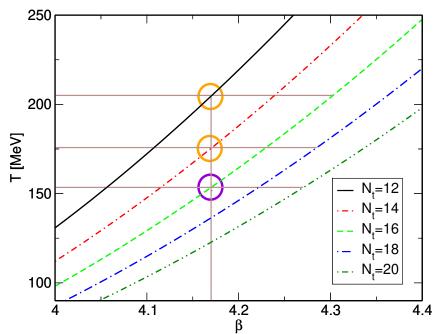


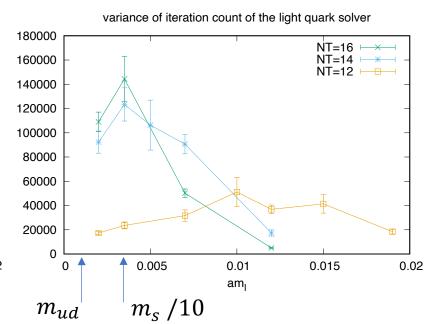


Simulation range

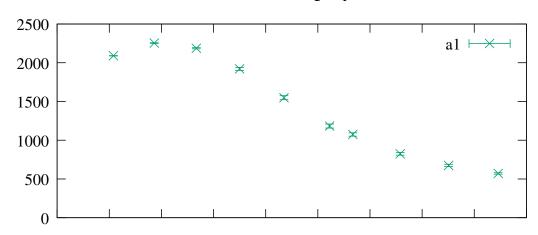
- $T \beta$ relation $T = 1/(aN_t)$
- Information from fixed β simulation
 - $N_t = 12$: $T \sim 200 \, MeV$
 - $N_t = 14$: $T \sim 170 \, MeV$
 - $N_t = 16$: $T \sim 150 \, MeV$
 - $N_S = 32$, $L_S = 12$: $m_{res} \simeq 4 \times 10^{-4}$
 - $m_{ud}^{latt} = 0.0014$, $m_s^{latt} = 0.0388$



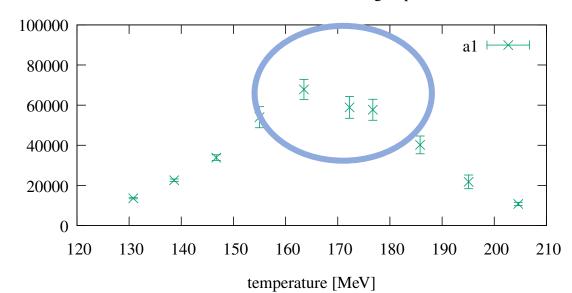


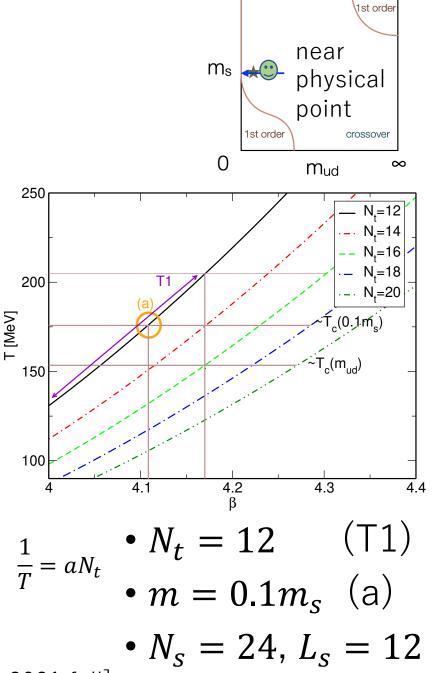


iteration count of the light quark solver



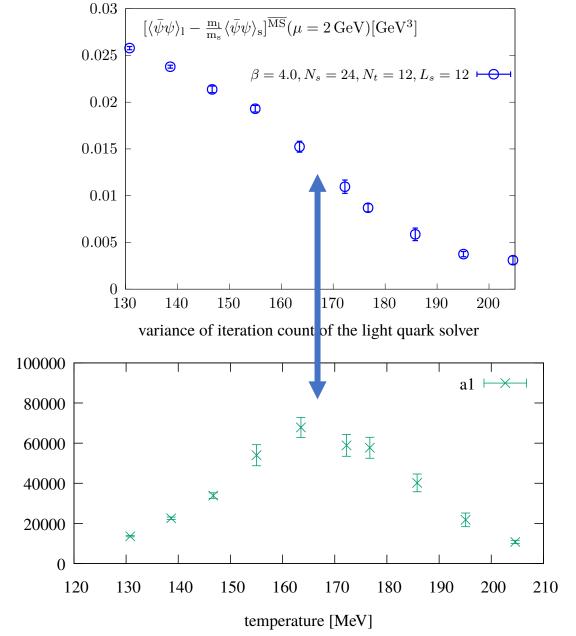
variance of iteration count of the light quark solver



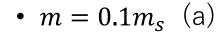


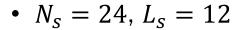
 ∞

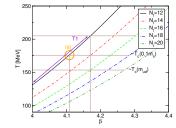
[I. Kanamori @ JPS 2021 fall]

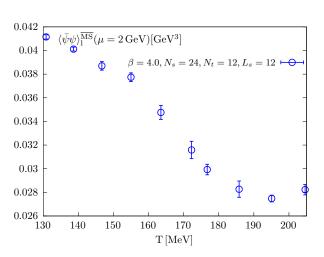


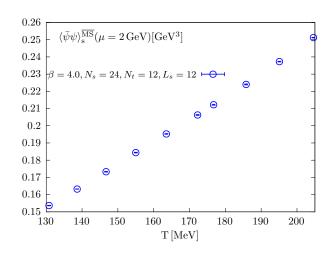


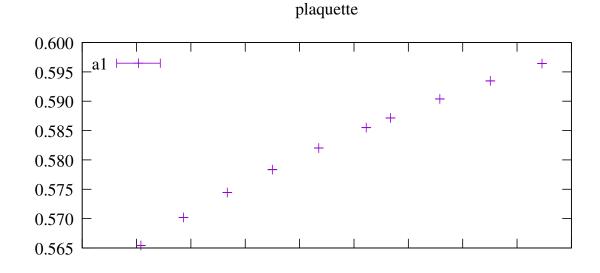


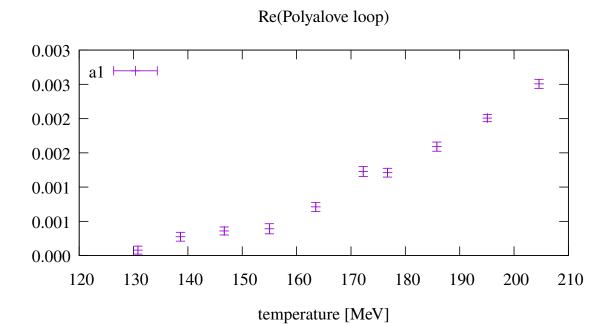


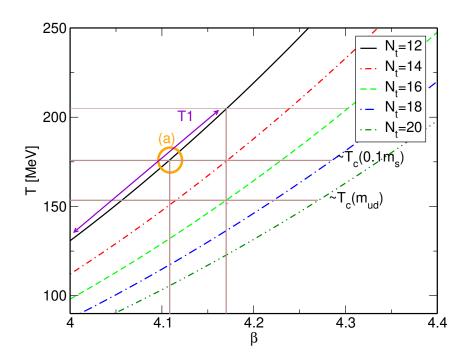








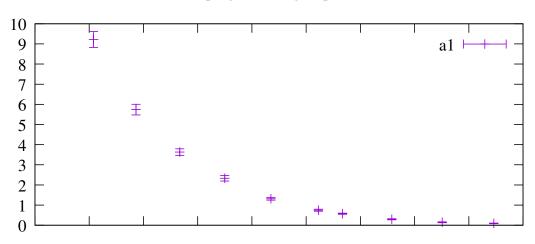




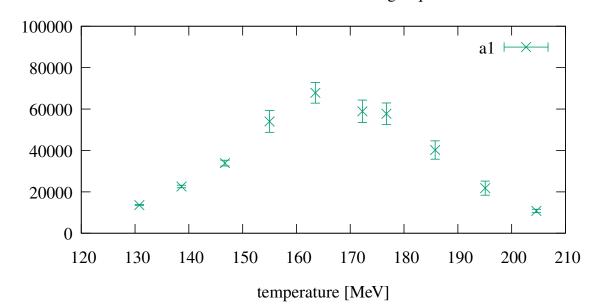
$$\bullet N_t = 12 \qquad (T1)$$

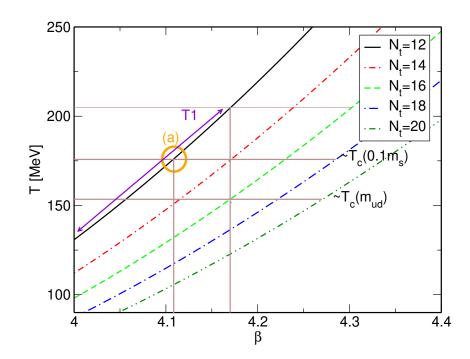
•
$$m = 0.1 m_s$$
 (a)

•
$$N_S = 24$$
, $L_S = 12$



variance of iteration count of the light quark solver





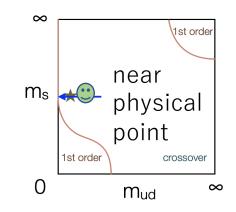
$$\bullet N_t = 12 \qquad (T1)$$

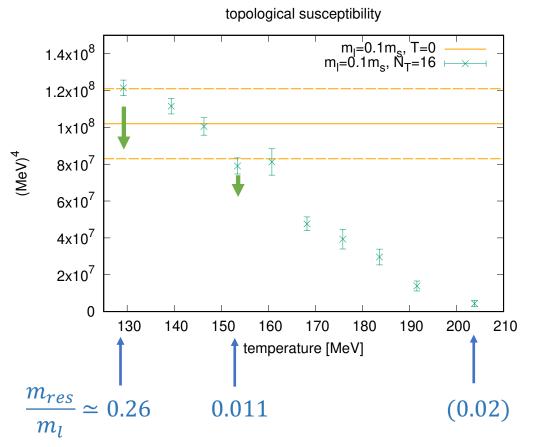
•
$$m = 0.1 m_s$$
 (a)

•
$$N_S = 24$$
, $L_S = 12$

Topological susceptibility with fully chiral fermions

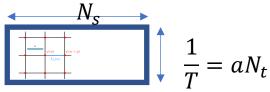
Topological charge: gluonic definition with Wilson flow

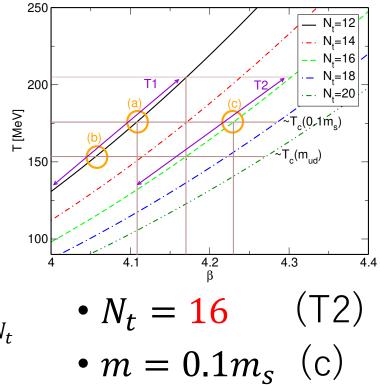




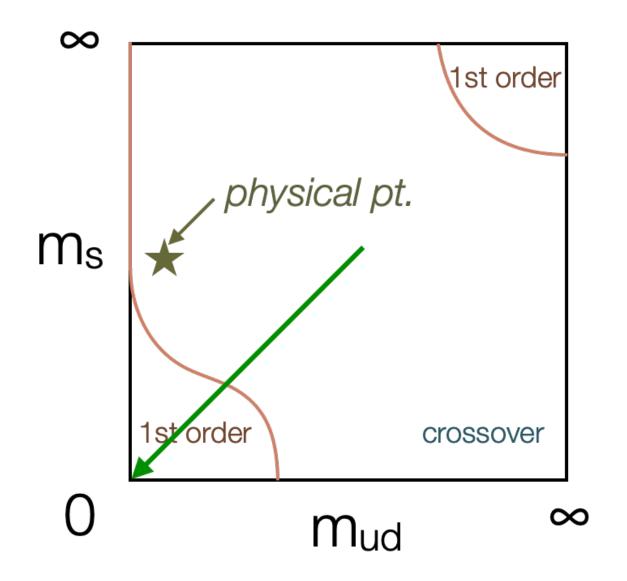
Not a rigorous LCP: m_{res} neglected

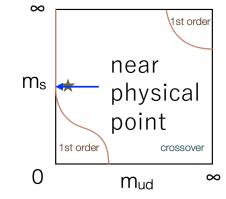
Correction required.

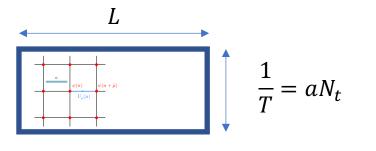


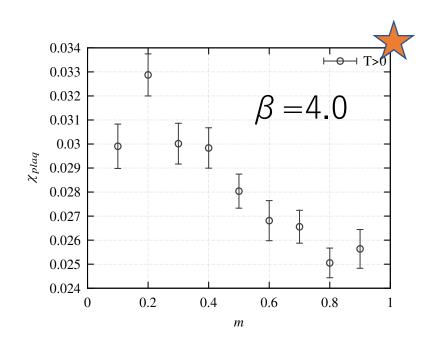


• $N_s = 32$, $L_s = 12$

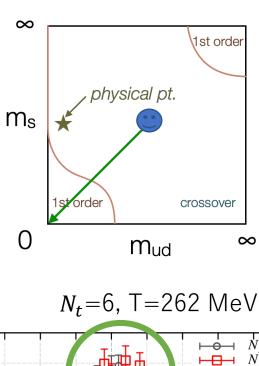


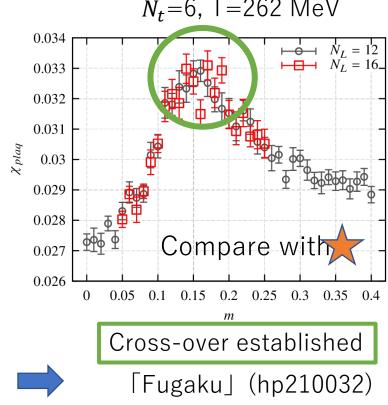


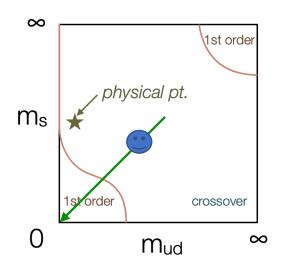


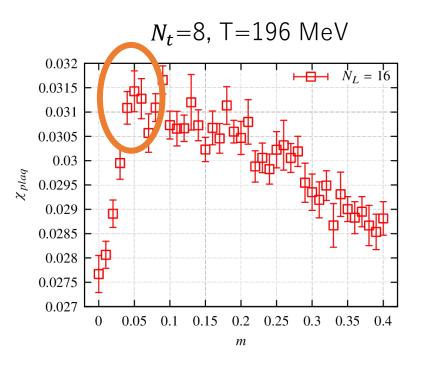


Kyushu Ito (hp200050)

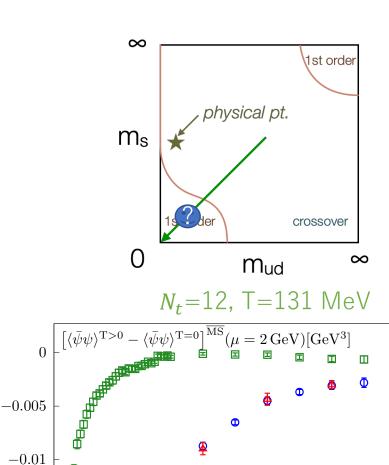








[Y. Nakamura @ JPS 2021 fall]



40

60

80

 $(m_l + m_{\rm res})^{\rm R} [{\rm MeV}]$

100

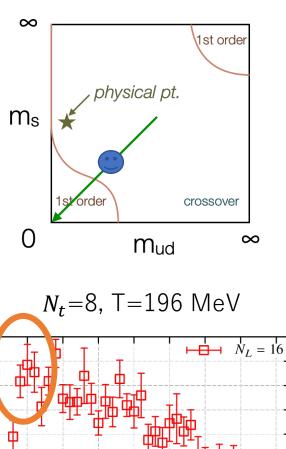
120

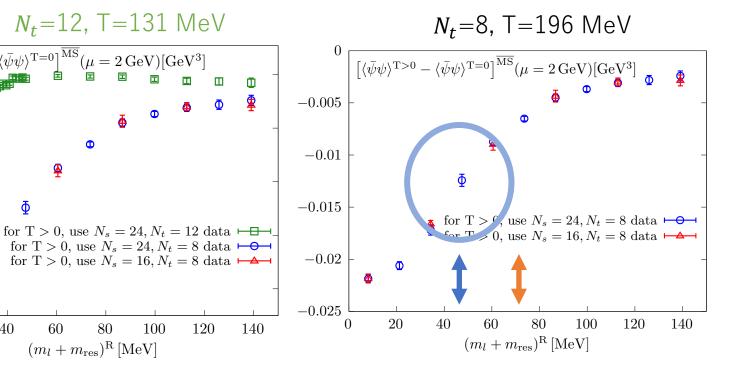
140

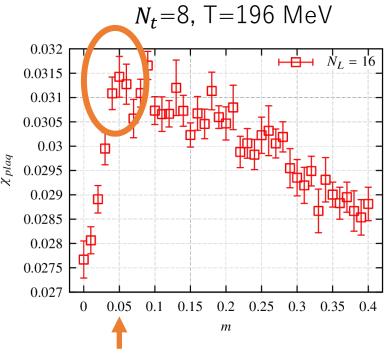
-0.015

-0.02

- ✓ Chiral order parameter
- ✓ Physical scale
- ✓ renormalize power divergence
- ✓ renormalize log divergence
- ✓ renormalize quark mass

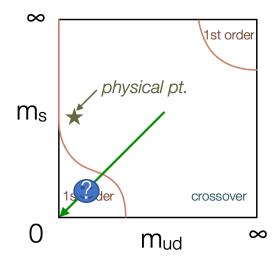






Nf=3 phase structure is a hot topic

- Staggered computations suggest
 - cross over all the way $m\rightarrow 0$
- Recent HISQ results
 - Bielefeld-Bangalore arXiv/2111.12599
 - $T_c = 98^{+3}_{-6}$ MeV (Nt=8) chiral limit [2nd order]
 - $m_c = 0$
- Wilson:
 - Tsukuba-RIKEN-Kanazawa: non-perturbatively O(a) improved
 - up to Nt=12: 1st order region exists
 - Continuum limit: only upper limit of m_c $(m_\pi \lesssim 110 \text{ MeV})$ determined
 - Continuum limit: $T_E = 134(3)$ MeV
- Our Möbius DWF:
 - Nt=12, T =131 MeV, $m_c \simeq 2 m_{ud} \rightarrow m_\pi = 190 \ MeV$
 - Crossover / order of the transition yet to be determined.
- Tensions exist among different approaches



Summary and outlook

- Summary
 - Nf = 2 + 1
 - Möbius DWF simulation for T>0 with $N_t=12$, 16
 - \leftrightarrow N_t=8 by HotQCD (2012)
 - Along the Line of Constant Physics
 - First simulations with $m = 0.1 m_s$, $N_s/N_t=2$
 - Underway using Fugaku
 - · some results begin to unfold
 - mres effects sizable for some quantities, especially topological susceptibility
 - Nf=3
 - Möbius DWF simulation at $\beta = 4.0$ ($a \approx 0.12$ fm), T=131, 196, 262 MeV
 - Yet to resolve the tension between Wilson and staggered results
- Outlook
 - Nf = 2 + 1
 - LCP: mres correction needed
 - Get closer to physical m_{ud}
 - Larger volume
 - Nf=3
 - Get closer to chiral limit and lower T

Nf=2+1 Simulation plan

•
$$N_t = 12$$

•
$$m = 0.1 m_s$$

•
$$N_S = 24$$
, $L_S = 12$

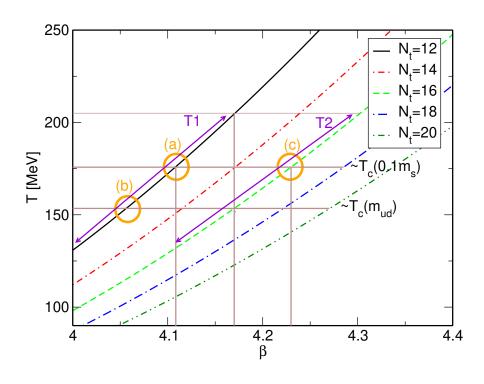
• Almost done

•
$$N_t = 16$$

•
$$m = 0.1 m_{s}$$

•
$$N_S = 32$$
, $L_S = 12$

Still underway



•
$$N_t = 12$$

•
$$m \simeq m_{ud}$$

•
$$N_S = 24$$
, $L_S = 12$

Mass tuning is necessary

•
$$m_{res} \simeq m_{ud}$$