Non-pertrubative studies of parton distribution functions

December 16, 2021
Online DWQ@25 BNL

Kostas Orginos

X. Ji, D. Muller, A. Radyushkin (1994-1997)

A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics

C. C. Chang ${ }^{1,2}$, A. N. Nicholson ${ }^{1,3,4}$, E. Rinaldi ${ }^{1,5,6}$, E. Berkowitz ${ }^{6,7}$, N. Garron ${ }^{8}$, D. A. Brantley ${ }^{1,6,9}$, H. Monge-Camacho ${ }^{1,9}$,
C. J. Monahan ${ }^{10,11}$, C. Bouchard ${ }^{9,12}$, M. A. Clark ${ }^{13}$, B. Joó ${ }^{14}$, T. Kurth ${ }^{1,15}$, K. Orginos ${ }^{9,16}$, P. Vranas ${ }^{1,6}$ \& A. Walker-Loud ${ }^{1,6 *}$

Nature volume 558, pages 91-94 (2018)

$$
g_{\mathrm{A}}=1.271 \pm 0.013
$$

Determination of Parton distribution functions from Experiment

Fits to experimental data

Determination of Parton distribution functions from Experiment

Fits to experimental data

Determination of Parton distribution functions from Experiment

Parton distributions and lattice QCD calculations: a community white paper

JLab 12 GeV

Generalized Parton Distributions

The Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

The computers and smartphones we use every day depend on what we learned about the atom in the last century. All information technology=and much of our economy todayrelies on understanding the electromagnetic force between the atomic nucleus and the electrons that orbit it. The science of that force is well understood but we still know litie about the microcosm within the protons and neutrons that make up the atomic nucleus. That's why Brookhaven Lab is building a new machine-an Electron-Ion Collider, or EIC-to look inside the nucleus and its protons and neutrons.

The EIC will be a particle accelerator that collides electrons with protons and nuclei to produce snapshots of those particles' internal structure-like a CT scanner for atoms. The electron beam will reveal the arrangement of the quarks and gluons that make up the protons and neutrons of nuclei. The force that holds quarks together, carried by the gluons, is the strongest force in Nature. The ElC will allow us to study this "strong nuclear force" and the role of gluons in the matter within and all around us. What we learn from the EIC could power the technologies of tomorrow.

DVCS factorization

III-defined inverse problem —-> Lattice QCD computations are essential

Hadron Structure in Euclidean Space Go beyond moments

- Goal: Compute full x-dependence (generalized) parton distribution functions (GPDFs)
- Operator product: Mellin moments are local matrix elements that can be computed in Lattice QCD
- Power divergent mixing limits us to few moments
- X. Ji suggested an approach for obtaining PDFs from Lattice QCD
Y.-Q. Ma J.-W. Qiu (2014) 1404.6860
- First calculations quickly became available
- Older approaches based on the hadronic tensor
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)
C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)

Pseudo-PDFs

An alternative point of view

Unpolarized PDFs proton:

$$
\begin{aligned}
& \mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \\
& \hat{E}(0, z ; A)=\mathcal{P} \exp \left[-i g \int_{0}^{z} \mathrm{~d} z_{\mu}^{\prime} A_{\alpha}^{\mu}\left(z^{\prime}\right) T_{\alpha}\right]
\end{aligned}
$$

space-like separation of quarks

Lorentz decomposition:

$$
\mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
$$

Pseudo-PDFs

Connection to light-cone PDFs

$$
\begin{gathered}
\qquad \mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right) \\
z=\left(0, z_{-}, 0\right) \\
\text { Collinear PDFs: Choose } \quad p=\left(p_{+}, 0,0\right) \quad \mathcal{M}^{+}(z, p)=2 p^{+} \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)
\end{gathered}
$$

$$
\gamma^{+}
$$

Definition of PDF:

$$
\mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x f(x) e^{-i x p_{+} z_{-}}
$$

Lorentz invariance allows for the computation of invariant form factors in any frame Use equal time kinematics for LQCD

Lattice QCD calculation:

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle
$$

Choose

$$
\begin{aligned}
& p=\left(p_{0}, 0,0, p_{3}\right) \\
& z=\left(0,0,0, z_{3}\right) \quad \gamma^{0}
\end{aligned}
$$

On shell equal time matrix element computable in Euclidean space

Obtaining only the relevant

$$
\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)=\frac{1}{2 p_{0}} \mathcal{M}^{0}\left(z_{3}, p_{3}\right)
$$

$$
\mathcal{P}\left(x,-z^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu,-z^{2}\right) e^{-i x \nu}
$$

Choosing γ^{0} was also suggested also by M. Constantinou at GHP2017 based on an operator mixing argument for the renormalized matrix element

Collinear singularity at $\quad-z^{2} \rightarrow 0$
Matching to $\overline{M S}$

$$
\mathcal{M}_{p}\left(\nu, z^{2}\right)=\int_{0}^{1} d \alpha \mathcal{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(\alpha \nu, \mu)+\mathcal{O}\left(z^{2} \Lambda_{q c d}^{2}\right)
$$

$\mathcal{Q}(\nu, \mu) \quad$ is called the loffe time PDF
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

$$
\mathcal{Q}(\nu, \mu)=\int_{-1}^{1} d x e^{-i x \nu} f(x, \mu)
$$

Calculation of the matching Kernel

One loop calculation of the UV divergences results in

$$
\mathcal{M}^{0}(z, P, a) \sim e^{-m|z| / a}\left(\frac{a^{2}}{z^{2}}\right)^{2 \gamma_{e n d}}
$$

after re-summation of one loop result resulting exponentiation

- J.G.M.Gatheral,Phys.Lett.133B,90(1983)
- J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984),
- G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987).

UV divergences appear multiplicatively

Consider the ratio

$$
\mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)}
$$

UV divergences will cancel in this ratio resulting a renormalization group invariant (RGI) function

The collinear divergences at $z_{3}^{2}=0$ limit only appear in the numerator

The lattice regulator can now be removed $\mathfrak{M}^{\text {cont }}\left(\nu, z_{3}^{2}\right) \quad$ Universal independent of the lattice

$$
\mathcal{M}_{p}(0,0)=1 \quad \text { Isovector matrix element }
$$

Continuum limit matching to $\overline{M S}$ computed at 1-loop

Radyushkin Phys.Rev. D98 (2018) no.1, 014019
Zhang et al. Phys.Rev. D97 (2018) no.7, 074508

$$
\begin{aligned}
\mathfrak{M}\left(\nu, z^{2}\right) & =\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
\mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) & =\cos (x \nu)-\frac{\alpha_{s}}{2 \pi} C_{F}\left[\ln \left(e^{2 \gamma_{E}+1} z^{2} \mu^{2} / 4\right) \tilde{B}(x \nu)+\tilde{D}(x \nu)\right]
\end{aligned}
$$

$$
\begin{aligned}
\tilde{B}(x) & =\frac{1-\cos (x)}{x^{2}}+2 \sin (x) \frac{x \operatorname{Si}(x)-1}{x}+\frac{3-4 \gamma_{E}}{2} \cos (x)+2 \cos (x)[\operatorname{Ci}(x)-\ln (x)] \\
\tilde{D}(x) & =x \operatorname{Im}\left[e^{i x}{ }_{3} F_{3}(111 ; 222 ;-i x)\right]-\frac{2-\left(2+x^{2}\right) \cos (x)}{x^{2}}
\end{aligned}
$$

Polynomial corrections to the loffe time PDF may be suppressed

$$
\begin{aligned}
& \text { B. U. Musch, et al Phys. Rev. D 83, } 094507 \text { (2011) } \\
& \text { M. Anselmino et al. 10.1007/JHEP04(2014)005 } \\
& \text { A. Radyushkin Phys.Lett. B767 (2017) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) \\
& \mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
& \text { loffe time }-z \cdot p=\nu
\end{aligned}
$$

- All coefficient functions respect continuum symmetries
- Lattice spacing corrections to higher twist effects are ignored
- On dimensional ground a / z terms must exist
- Additional O(a) effects (last term)

The inverse problem to solve: Obtain $q(x, \mu)$ from the lattice matrix elements

Our inverse problem

$$
\mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) .
$$

- Obtain the PDF from a limited set of matrix elements obtained from lattice QCD
- z^{2} is a physical length scale sampled on discrete values
- z^{2} needs to be sufficiently small so that higher twist effects are under control
- v is dimensionless also sampled in discrete values
- the range of v is dictated by the range of z and the range of momenta available and is typically limited
- Parametrization of unknown functions

Sample data

arXiv:2105.13313 [hep-lat] J. Karpie et.al.

ID	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	β	$c_{\text {SW }}$	κ	$L^{3} \times T$	$N_{\text {cfg }}$
$\widetilde{A} 5$	$0.0749(8)$	$446(1)$	5.2	2.01715	0.13585	$32^{3} \times 64$	1904
E5	$0.0652(6)$	$440(5)$	5.3	1.90952	0.13625	$32^{3} \times 64$	999
N5	$0.0483(4)$	$443(4)$	5.5	1.75150	0.13660	$48^{3} \times 96$	477

$$
a=0.075 f \mathrm{~m}
$$

$a=0.065 f m$

$$
a=0.048 \mathrm{fm}
$$

Nucleon Momentum scan

Energy vs momentum

Maximum attainable momentum in lattice units can be up to $O(1)$
Smaller lattice spacing allows for physically larger momentum

Jacobi Polynomials

Inverse problem

PDF parametrization

$$
q_{+}(x)=q(x)+\bar{q}(x)
$$

$$
q_{ \pm}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} \pm d_{n}^{(\alpha, \beta)} J_{n}^{(\alpha, \beta)}(x)
$$

$J_{n}^{(\alpha, \beta)}(x)$ Jacobi Polynomials: Orthogonal and complete in the interval [0,1]

$$
\int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x) J_{m}^{(\alpha, \beta)}(x)=N_{n}^{(\alpha, \beta)} \delta_{n, m}
$$

Complete basis of functions in the interval $[0,1]$ for any α and β

$$
J_{n}^{(\alpha, \beta)}(x)=\sum_{j=0}^{n} \omega_{n, j}^{(\alpha, \beta)} x^{j}
$$

$$
\omega_{n, j}^{(\alpha, \beta)}=\binom{n}{j} \frac{(-1)^{j}}{n!} \frac{\Gamma(\alpha+n+1) \Gamma(\alpha+\beta+n+j+1)}{\Gamma(\alpha+\beta+n+1) \Gamma(\alpha+j+1)} .
$$

$$
\operatorname{Re} \mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{R}\left(x \nu, \mu^{2} z^{2}\right) q_{-}\left(x, \mu^{2}\right) \quad \operatorname{Im} \mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{I}\left(x \nu, \mu^{2} z^{2}\right) q_{+}\left(x, \mu^{2}\right)
$$

$$
\begin{gathered}
\mathcal{K}_{R}\left(x \nu, \mu^{2} z^{2}\right)=\sum_{n=0}^{\infty} \frac{\sigma_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)}{N_{n}^{(\alpha, \beta)}} J_{n}^{(\alpha, \beta)}(x) \\
\mathcal{K}_{I}\left(x \nu, \mu^{2} z^{2}\right)=\sum_{n=0}^{\infty} \frac{\eta_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)}{N_{n}^{(\alpha, \beta)}} J_{n}^{(\alpha, \beta)}(x), \\
\sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} c_{2 k}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+1, \beta+1) \nu^{2 k} \\
\eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)=\sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} c_{2 k+1}\left(z^{2} \mu^{2}\right) \omega_{n, j}^{(\alpha, \beta)} B(\alpha+2 k+j+2, \beta+1) \nu^{2 k+1}(\\
\operatorname{Re} \mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)=1+\sum_{n=1}^{N_{-}} \sigma_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)_{-} d_{n}^{(\alpha, \beta)} \\
\operatorname{Im} \mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)=\sum_{n=0}^{N_{+}-1} \eta_{n}^{(\alpha, \beta)}\left(\nu, z^{2} \mu^{2}\right)_{+} d_{n}^{(\alpha, \beta)} .
\end{gathered}
$$

$$
\begin{aligned}
\mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) . \\
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} .
\end{aligned}
$$

Parametrization of correction terms - Only use one of each kind

Higher Twist
z-dependent lattice spacing
z-independent lattice spacing

$$
\begin{array}{ll}
\operatorname{Re} B_{1}(\nu)=\sum_{n=1}^{N_{R, b}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) b_{R, n}^{(\alpha, \beta)}, & \operatorname{Im} B_{1}(\nu)=\sum_{n=1}^{N_{I, b}} \eta_{0, n}^{(\alpha, \beta)}(\nu) b_{I, n}^{(\alpha, \beta)} \\
\operatorname{Re} P_{1}(\nu)=\sum_{n=1}^{N_{R, p}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) p_{R, n}^{(\alpha, \beta)}, & \operatorname{Im} P_{1}(\nu)=\sum_{n=1}^{N_{I, p}} \eta_{0, n}^{(\alpha, \beta)}(\nu) p_{I, n}^{(\alpha, \beta)}
\end{array}
$$

$$
\operatorname{Re} R_{1}(\nu)=\sum_{n=1}^{N_{R, r}} \sigma_{0, n}^{(\alpha, \beta)}(\nu) r_{R, n}^{(\alpha, \beta)} \quad, \quad \operatorname{Im} R_{1}(\nu)=\sum_{n=1}^{N_{I, r}} \eta_{0, n}^{(\alpha, \beta)}(\nu) r_{I, n}^{(\alpha, \beta)},
$$

$$
\begin{aligned}
& \sigma_{0, n}^{(\alpha, \beta)}(\nu)=\int_{0}^{1} d x \cos (\nu x) x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x) \\
& \eta_{0, n}^{(\alpha, \beta)}(\nu)=\int_{0}^{1} d x \sin (\nu x) x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x),
\end{aligned}
$$

Bayesian Inference

Optimize model parameters

- Fix the expansion order in the Jacobi polynomial expansion
- Optimize α, β and the expansion of coefficients by maximizing the posterior probability
- Average over models using AICc
- Note that one could fix α, β at a reasonable value and the vary the order of trancation in the Jacobi polynomial expansion

$$
P\left[\theta \mid \mathfrak{M}^{L}, I\right]=\frac{P\left[\mathfrak{M}^{L} \mid \theta\right] P[\theta \mid I]}{P\left[\mathfrak{M}^{L} \mid I\right]}
$$

$$
P\left[\theta \mid \mathfrak{M}^{L}, I\right]=\frac{P\left[\mathfrak{M}^{L} \mid \theta\right] P[\theta \mid I]}{P\left[\mathfrak{M}^{L} \mid I\right]}
$$

Probability distribution of the data given the parameters

$$
P\left[\mathfrak{M}^{L} \mid \theta\right] \propto \exp \left[-\frac{\chi^{2}}{2}\right] \quad \chi^{2}=\sum_{k, l}\left(\mathfrak{M}_{k}^{L}-\mathfrak{M}_{k}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}^{L}-\mathfrak{M}_{l}\right)
$$

Prior distributions
Shifted lognormal for a, β so that $a>-1$ and $b>-1$
Normal distribution for all linear parameters (expansion coefficients)
Optimize parameters using non-linear optimizer for α, β only
VarPro (Variable projection method) allows for exact optimization of all expansion coefficients given α, β

model	Real $L^{2} /$ d.o.f.	Real $\chi^{2} /$ d.o.f.	Imag $L^{2} /$ d.o.f.	Imag $\chi^{2} /$ d.o.f.
Q only	3.173	3.094	3.146	3.095
Q and B_{1}	2.721	2.479	3.054	2.969
Q and R_{1}	3.028	2.748	3.068	2.871
Q and P_{1}	0.876	0.809	1.186	1.088
Q, B_{1}, and R_{1}	2.610	2.057	2.917	2.619
Q, B_{1}, and P_{1}	0.852	0.723	1.020	0.888
Q, R_{1}, and P_{1}	0.881	0.763	1.289	1.063
All terms	0.857	0.727	1.026	0.893

the z-dependent lattice spacing effect seems the most important systematic error
arXiv:2105.13313 [hep-lat] J. Karpie et.al.

Isovector quark and anti-quark distributions

Comparison with phenomenology

arXiv:2105.13313 [hep-lat] J. Karpie et.al.

Sequential operator approach

plot: J. Karpie
$\mathrm{a}=0.093 \mathrm{fm} \mathrm{m}_{\pi} \sim 350 \mathrm{MeV} 32^{3} \times 64$
distillation

plot: C. Egerer

First distillation results

2+1 flavors single lattice spacing

arXiv:2107.05199 [hep-lat] C. Egerer et.al.

Conclusions

Outlook

- Understanding hadronic structure is a major goal in nuclear physics
- Large experimental effort: JLab 12 GeV and future EIC
- Lattice QCD calculations can in principle compute (Generalized) parton distribution functions from first principles
- Controlling all systematics of the calculation is important and that complicates the solution of the inverse problem at hand
- Both lattice spacing and higher twist effects need to be controlled
- New ideas are needed for pushing to higher momentum and improved sampling of the loffe time
- The range of loffe time is essential for obtaining the x-dependence of distribution functions
- Synergy between lattice and experiment may be proven essential in providing precision estimates of (Generalized) parton distribution functions

END

