Global Fits of Domain Wall QCD

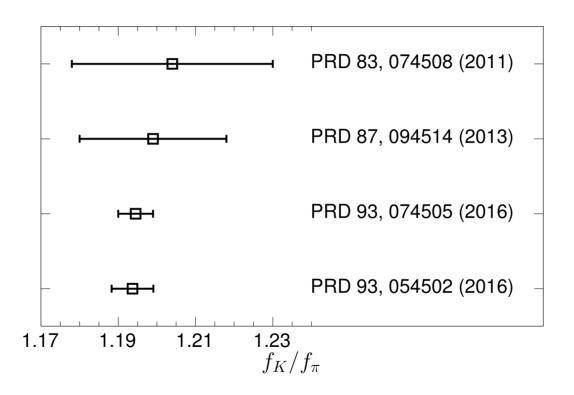
Yong-Chull Jang
Department of Physics, Columbia University

DWQ@25, 13-17 Dec. 2021, BNL-HET & RBRC (Virtual)

Objectives

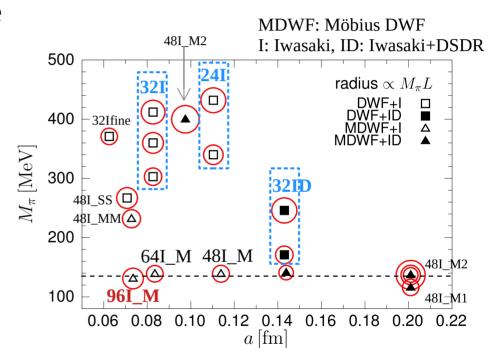
- Scale setting precisions of physics calculations, e.g., *g*-2, depend on knowing precise lattice spacings
- New physical ensemble 96I is included in the global fit
- Prediction of physical quark masses, f_K/f_{π} , ...
- Low Energy Constants (LECs) in ChPT can be extracted
- RBC-UKQCD's more than a decade long efforts with the global fits
 - [R. Mawhinney, PoS Lattice 2009, arXiv:0910.3194] NLO and NNLO global fits
 - Y. Aoki *et al.*, Phys. Rev. D 83, 074508 (2011)] continuum limit with 32I, 24I
 - [R. Arthur *et al.*, Phys. Rev. D 87, 094514 (2013)] with near-physical points and 32ID
 - [T. Blum *et al.*, PRD 93, 074505(2016)] C. Kelly, NLO global fits incl. 48I_M, 64I_M, 32Ifine
 - P. A. Boyle *et al.*, PRD 93, 054502 (2016)] D. Murphy, NNLO ChPT study incl. 48M_ID

$$f_K/f_{\pi}$$

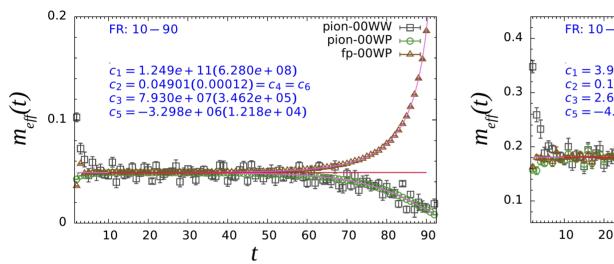


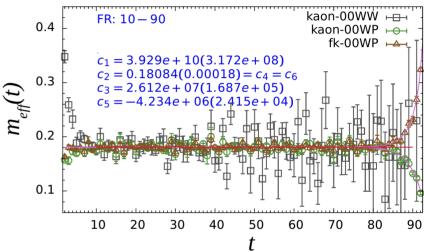
Ensembles

- 96I_M physical mass ensemble with the smallest lattice spacing
- 24I, 32I, and 32ID lattices have partially quenched valence quark masses combinations (Fig. unitary pion only)
- 3 volumes at $a \sim 0.2$ fm, $M_{\pi} \sim 135$ MeV
- Heavy pion mass (>500MeV) and G-parity ensembles are not shown



96I_M: M_{π} , f_{π}/M_{K} , f_{K}





- Correlators are simultaneously fitted with a single state uncorrelated fits
- Effective masses calculated for both data and fit are compared: $m_{\text{eff}}(t) = \ln \frac{C(t)}{C(t+1)}$
- Statistical errors at present ~ 0.2% (0.1%) for $M_{_{\pi}}$ ($M_{_{K}}$)
- 3x measurements will be completed soon

96I_M: Z_A

$$Z_{A}^{\text{eff}}(t) = \frac{1}{2} \left[\frac{C_{\mathcal{A}}(t-1) + C_{\mathcal{A}}(t)}{2C_{A}(t-1/2)} + \frac{2C_{\mathcal{A}}(t)}{C_{A}(t+1/2) + C_{A}(t-1/2)} \right]$$

$$C_{\mathcal{A}}(t) \equiv \langle 0|\sum_{x} \partial_{\mu}A_{\mu}^{a}(x,t)|\pi\rangle$$

$$C_{A}(t-1/2) \equiv \langle 0|\sum_{x} \partial_{\mu}A_{\mu}^{a}(x,t)|\pi\rangle$$

$$C_{A}(t-1/2) \equiv \langle 0|\sum_{x} \partial_{\mu}A_{\mu}^{a}(x,t)|\pi\rangle$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

$$0.775$$

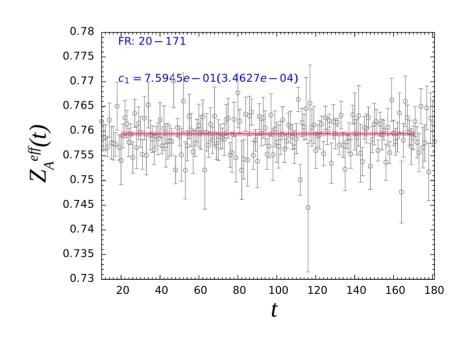
$$0.775$$

$$0.775$$

$$0.775$$

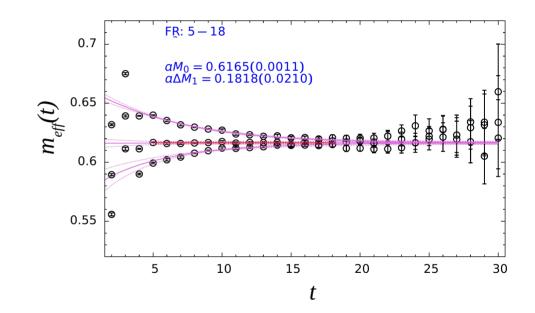
$$0.775$$

- Z_A from the improved ratio of 5-dim. to 4-dim. axial current divergences
- uncorrelated fits
- statistical errors at present $\sim 0.05\%$
- used for f_{π} , f_{K}



96I_M: M_{Ω}

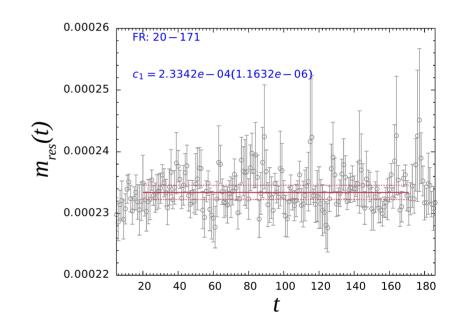
- Three box sources 24³, 32³, 48³
- Correlators are simultaneously fitted with two states M_0 and M_1
- Uncorrelated fit
- Effective mass: $m_{\text{eff}}(t) = \ln \frac{C(t)}{C(t+1)}$
- Statistical error in $M_{\odot} \sim 0.2\%$



96I_M: residual mass

- uncorrelated fits
- sea quark masses $m_1 = 0.00054$, $m_s = 0.02132$

$$m_{\rm res}(t) = \frac{\langle 0|\sum_{x} j_{5q}^{a}(x,t)|\pi\rangle}{\langle 0|\sum_{x} j_{5}^{a}(x,t)|\pi\rangle}$$



Global Fits

- On a lattice with dynamical quark masses am_l (u,d) and am_h (s)
- Q is measured with valence quark masses $am_x \leq am_y$

$$Q = (a^{2}m_{\pi}^{2}, af_{\pi}, a^{2}m_{K}^{2}, af_{K}, am_{\Omega}, \sqrt{t_{0}}/a, w_{0}/a),$$

$$I = (am_{l}, am_{h}, am_{x}, am_{y}; a, L)$$

- deals with *dimensionless* quantities
- The global fit finds the best description H(I) of Q(I)

$$H = (h_{m_{\pi}}, h_{f_{\pi}}, h_{m_{K}}, h_{f_{K}}, h_{m_{\Omega}}, h_{t_{0}}, h_{w_{0}})$$

Global Fits – domain *I*

- Renormalized Trajectory Common LECs for all lattices
- Intermediate renormalization scheme, i.e., $Z_{l,h}=1$ on the reference ensemble "r" $I \to I' = (aZ_l m_l, aZ_h m_h, aZ_l m_x, aZ_h m_y; a, L)$
- Further, the fit is performed with relative lattice spacing $R_a = a_r/a$; the reference lattice spacing is absorbed into the LECs

$$I \to \tilde{I} = (R_a Z_l a m_l, R_a Z_h a m_h, R_a Z_l a m_x, R_a Z_h a m_y; R_a^{-1} a_r, L)$$

Global Fits – fit function *H*

$$H = (h_{m_{\pi}}, h_{f_{\pi}}, h_{m_{K}}, h_{f_{K}}, h_{m_{\Omega}}, h_{t_{0}}, h_{w_{0}})$$
$$h_{X}(\tilde{I}) = (\text{light quark}) + (\text{heavy quark})$$

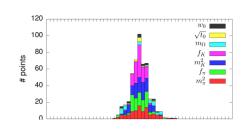
- SU(2) ChPT for the light quark mass dependences for each of hadronic quantity
- Analytic linear expansion for the heavy (strange) degrees of freedom

• e.g.,
$$M_{\pi}^2 = \frac{\chi_x + \chi_y}{2} \left\{ 1 + L^{m_{\pi}}(\chi_x, \chi_y, \chi_l) + c[m_{\pi}, m_h] \frac{1}{2B} (m_h - m_h^{\text{phys}}) \right\}$$

$$(\chi_l = 2Bm_l)$$

• Or, fully analytic ansatz for the both light and heavy quarks; always for $m_{\Omega}, w_0, \sqrt{t_0}$

Global Fits – scale setting



• LECs $\{c\}$, Rs, and Zs are determined by minimizing,

$$\chi_1^2(\{c\}, \{Z_l, Z_h, R_a\}) = \sum_{\tilde{I}} (Q(\tilde{I}) - H(\tilde{I}))^{\mathsf{T}} \text{Cov}^{-1}(Q(\tilde{I}) - H(\tilde{I}))$$

Given LECs, Rs, and Zs, the secondary fit solves for physical quark masses

$$\chi_2^2(m_l^{\text{phys}}, m_h^{\text{phys}}) = \left(\frac{\sqrt{h_{m_{\pi}}}}{h_{m_{\Omega}}} - \frac{m_{\pi}^{\text{phys}}}{m_{\Omega}^{\text{phys}}}\right)^2 + \left(\frac{\sqrt{h_{m_K}}}{h_{m_{\Omega}}} - \frac{m_K^{\text{phys}}}{m_{\Omega}^{\text{phys}}}\right)^2$$

• Then, lattice spacings are given by

$$a_r = h_{\Omega}(m_l^{\text{phys}}, m_h^{\text{phys}}, Z_l = Z_h = R_a = 1)/m_{\Omega}^{\text{phys}}$$

= $\sqrt{h_{\pi}}/m_{\pi}^{\text{phys}} = \sqrt{h_K}/m_K^{\text{phys}}$

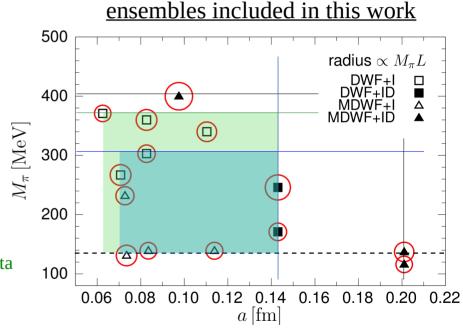
, first on the reference lattice, and subsequently for the rests $\,a=a_r/R_a\,$

Global Fit Variations

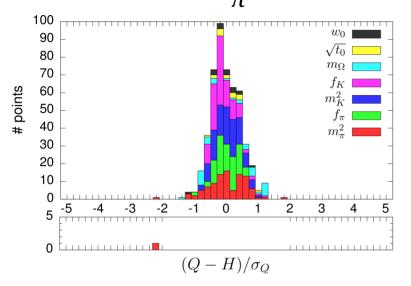
- SU(2) ChPTFV fit: NLO
- Discretization effect: *a*² term only, but different coefficients for I and ID ensembles
- Valence mass variations are in 32I, 24I, 32ID
- 32I is the reference ensemble, i.e., $R_a = 1$
- Varying data included in fits with cuts:

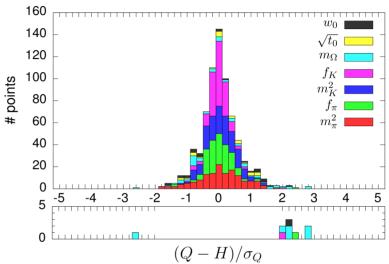
A)
$$a \sim 0.14$$
fm, $M_{\pi} \sim 400$ MeV: B + 32ID_M2 ($M_{\pi} \sim 400$ MeV)

- B) $a \sim 0.14$ fm, $M_{\pi} \sim 370$ MeV \Longrightarrow same cuts and methodology as the 2016 analysis with more data
- C) $a \sim 0.14 \text{fm}, M_{\pi} \sim 300 \text{ MeV}$
- D) $a \sim 0.20$ fm, $M_{\pi} \sim 300$ MeV: C + 32ID_M3 ($M_{\pi} \sim 135$ MeV)
- E) $a \sim 0.20$ fm, $M_{\pi} \sim 300$ MeV: D + 32ID_M1 ($M_{\pi} \sim 116$ MeV)

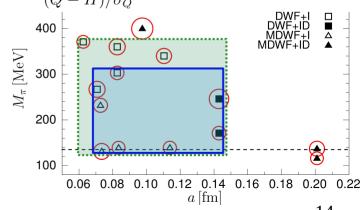


Fits with $M_{\pi} \sim 300 \text{ MeV}$ vs. 370 MeV cuts

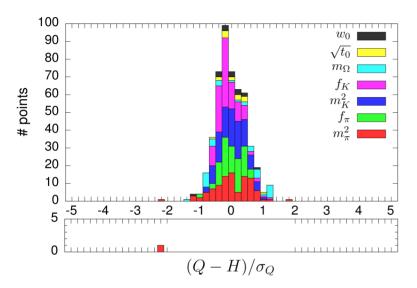


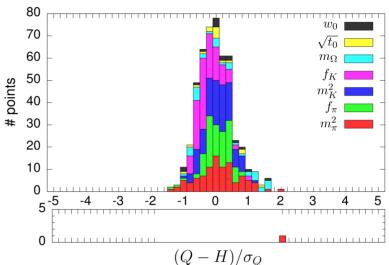


- Lattice spacing cut ~ 0.14 fm
- left: m_{π}^{2} in 32I
- right: f_{π} , f_{K} in 32Ifine / m_{Ω} in 32Ifine, 32I / w_{0} in 32I

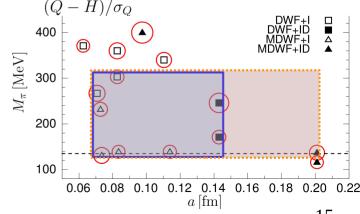


Fits with $a \sim 0.14$ fm vs. 0.20 fm cuts





- Pion mass cut ~ 300 MeV
- $M_{\pi} \sim 135$ MeV ID lattice at a ~ 0.2 fm is included
- left: m_{π}^{2} in 32I
- right: m_{π}^{2} in 32I



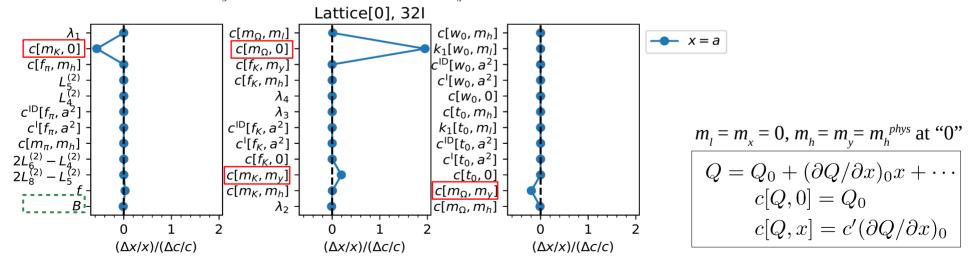
Sensitivity Test I

- Fit with cuts $a \sim 0.14$ fm, $M_{\pi} \sim 370$ MeV is examined
- A controlled LEC is shifted from the central value of a global fit examined by a small amount
- All other LECs and *Z*s and *R*s for non-primary lattices are fixed to the global fit centeral value
- Then, physical quark masses are readjusted:

$$\chi_2^2(m_l^{\text{phys}}, m_h^{\text{phys}}) = \left(\frac{\sqrt{h_{m_{\pi}}}}{h_{m_{\Omega}}} - \frac{m_{\pi}^{\text{phys}}}{m_{\Omega}^{\text{phys}}}\right)^2 + \left(\frac{\sqrt{h_{m_K}}}{h_{m_{\Omega}}} - \frac{m_K^{\text{phys}}}{m_{\Omega}^{\text{phys}}}\right)^2$$

Sensitivity Test I

- Lattice spacing "a" (on the primary lattice) is sensitive to four fit parameters
- Physical quark masses for m₁ and m_h are responding similarly,
- except an additional sensitivity in m_l with B; "a" is insensitive to B
- The m_l dependencies in $M_\pi^2, f_\pi, M_K^2, f_K$ appear with $\chi_l = 2Bm_l$; same for m_x , m_y for the pion and m_y for the Kaon



Sensitivity Test II

- The first sensitivity test ignores correlations
- A controlled LEC is shifted and all other LECs, Zs, and Rs are free
 LECs, Zs, and Rs are redetermined
- Then, physical quark masses are readjusted

Sensitivity Test II: prim. lattice

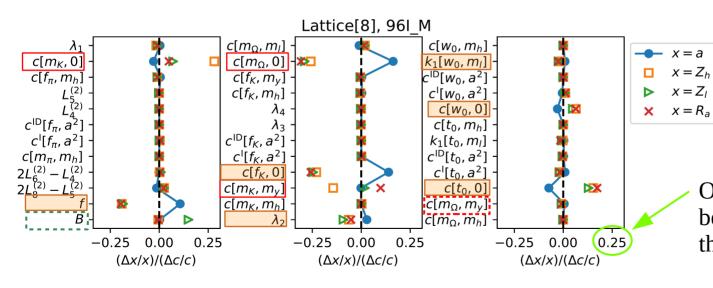
- Lattice spacing "a" of the *primary lattice* is still sensitive to 3 of 4 fit parameters identified with the test I
- Valence heavy mass (m_y) dependence in m_Ω becomes tiny whereas the dependence in m_K is enhanced relative to the change with $c[m_\Omega, 0]$

"a" becomes sensitive to six additional LECs $Q = Q_0 + (\partial Q/\partial x)_0 x + \cdots$ Lattice[0], 321 $c[Q,0] = Q_0$ $c[m_{\Omega}, m_l]$ $c[w_0, m_h]$ -x=a $c[Q, x] = c'(\partial Q/\partial x)_0$ $c[m_K, 0]$ $c[m_0, 0]$ - $[k_1[w_0,m_i]]$ $c^{\text{ID}}[w_0, a^2]$ $c[f_K, m_V]$ $c[f_K, m_h]$ $c^{1}[w_{0}, a^{2}]$ $c[w_0,0]$ for the primary lattice $c[t_0, m_b]$ $c^{I}[f_{\pi}, a^{2}]$ $c^{\text{ID}}[f_{\kappa}, a^2]$ $k_1[t_0,m_l]$ $c[m_{\pi}, m_h]$ $c^{\mathsf{I}}[f_K,a^2]$ $c^{\text{ID}}[t_0, a^2]$ $c[f_K, 0]$ $c^{1}[t_{0},a^{2}]$ $c[t_0,0]$ $c[m_K, m_V]$ Overall, changes $c[m_{\Omega}, m_{\nu}]$ $c[m_K, m_h]$ become smaller than $c[m_0, m_h]$ 0.0 0.1 0.0 0.0 0.1 -0.10.1 -0.1the test I, c.f., 2 $(\Delta x/x)/(\Delta c/c)$ $(\Delta x/x)/(\Delta c/c)$ $(\Delta x/x)/(\Delta c/c)$

Sensitivity Test II: non-prim. lattice

- the same set of major sensitive parameters for *non-primary lattices*
- Valence heavy mass (m_y) dependence in m_K (c[m_K , m_y]) becomes tiny for non-primary lattices, except for the 64I_M

•
$$c[f_{\pi}, 0] = f$$
, $\frac{\partial M_K^2}{\partial m_x} = \left(c[m_K, 0] \frac{2B}{f^2}\right) \lambda_2$



$$Q = Q_0 + (\partial Q/\partial x)_0 x + \cdots$$
$$c[Q, 0] = Q_0$$
$$c[Q, x] = c'(\partial Q/\partial x)_0$$

Overall, changes become smaller than the test I, c.f., 2

Summary & Outlook

- A work in progress with the global fit including 96I_M is reported
- Statistics on 96I_M will be increased by a factor of 3 targeting precision on "a" ~ 0.1%
- Systematics will be assessed further, e.g., NNLO ChPT
- Sensitivity test shows that
 - leading coefficients c[Q,0] for $Q = f_{\pi}$, f_{K} , m_{Ω} , t_{0} are the most sensitive parameters, and then for $Q = m_{K}$, w_{0}
 - sea (valence) light mass dependence $c[w_0, m_1]$ ($c[m_K, m_X]$) has smaller effects on "a"
 - valence heavy mass dependence $c[m_K, m_v]$ could be either as large as the effect of $c[m_\Omega, 0]$ or tiny
 - correlations among Z_b , Z_h , R_a , and LECs reduce the net impact on the lattice spacing "a"

Thank you for your attention