S-wave $\pi \pi \mathrm{I}=0$ and $\mathrm{I}=2$ scattering with physical pion mass

Tianle Wang ${ }^{1}$, Christopher Kelly ${ }^{1}$
${ }^{1}$ Department of Physics
Columbia University

December 19, 2021

Why shall we perform this calculation?

- $K \rightarrow \pi \pi$ calculation
- Need $E_{\pi \pi}$ and $A_{\pi \pi}$ to compute lattice matrix element $M_{l a t}$
- Need δ_{0} and $\frac{d \delta_{0}}{d k}$ to compute LL factor
- Understand $\pi \pi$ final state
- First calculation with physical pion mass and disconnected diagram
- A calculation on GPBC lattice
- 2015 results gives $\pi \pi$ energy which is $3 \sigma(7 \sigma$ with more statistics) higher than the phenomenological prediction(Pi-Pi puzzle)

$$
\begin{aligned}
\delta_{0} & =23.8(4.9)(1.2)^{\circ}(P R L, 2015) \\
& =19.1(2.5)^{\circ}(1386 \text { confs }) \\
& \approx 36^{\circ}(\text { Dispersion })
\end{aligned}
$$

- Possible reason: Excited state contamination for $\pi \pi$ state
- Solution: Introducing more operators

Calculation details and techniques

Operators list:

- Original $\pi \pi$ interpolating operator (O_{a} or $\pi \pi(111,111)$): two single π operator with momentum $(\pm 1, \pm 1, \pm 1) \frac{\pi}{L}[\pi(111)]$
- σ operator $\left(O_{c}\right.$ or σ):
$\frac{i}{\sqrt{2}}(\bar{u} u+\bar{d} d)$. This operator has the same quantum number as $\pi \pi_{l=0}$
- Extra $\pi \pi$ operator (O_{b} or $\pi \pi(311,311)$):
two new π operator with one of their component replaced by $\pm \frac{3 \pi}{L}[\pi(311)]$
General techniques:
- G-parity boundary condition
- All to all propagator
- Non-overlapping blocked bootstrap [cf. 1911.04582]

Fitting strategies and results

$$
\begin{equation*}
C_{i j}\left(t_{\text {snnk }}, t=t_{\text {snk }}-t_{\text {src }}\right)=\left\langle O_{i}^{\dagger}\left(t_{\text {snk }}\right) O_{j}\left(t_{\text {src }}\right)\right\rangle-\langle 0| O_{i}\left(t_{\text {snk }}\right)|0\rangle\langle 0| O_{j}\left(t_{\text {src }}\right)|0\rangle \times \delta_{l, 0} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
C_{i j}(t)=\sum_{x=1}^{N} A_{i x} A_{j x}\left(e^{-E_{x} t}+e^{-E_{x}(T-t)}\right)+B_{i j} \times \delta_{l, 2} \tag{2}
\end{equation*}
$$

- Non-negligible excited state contamination in $\pi \pi(111,111)$ operator
- σ significantly suppresses both excited state error and statistical error
- $\pi \pi(311,311)$ improves statistical error

Pi-Pi puzzle: Solution

- Normalized overlap matrix also supports this argument.

	state $_{0}$	state $_{1}$	state $_{2}$
$\pi \pi(111,111)$	$1.0(0.0)$	$0.47(2)$	$0.31(7)$
σ	$1.0(0.0)$	$-0.83(3)$	$-0.87(22)$
$\pi \pi(311,311)$	$0.053(9)$	$-0.84(12)$	$1.0(0.0)$

- We decide to include all operators

$$
\begin{aligned}
\delta_{0} & =23.8(4.9)(1.2)^{\circ}(\text { PRL, 2015, 1op }) \\
& =19.1(2.5)^{\circ}(1386 \text { confs, } 1 o p) \\
& \approx 36^{\circ}(\text { Dispersion }) \\
& =32.3(1.0)^{\circ}(741 \text { confs, } 3 o p)
\end{aligned}
$$

- Better control over excited state error
- Better statistical error with smaller number of confs

Moving frame (non-zero total momentum)

- Two sets of π operator ($\pi(111)$ and $\pi(311)$) allow us to construct $\pi \pi$ operator with non-zero total momentum \rightarrow Moving frame calculation
- Phase shift at multiple \sqrt{s}
- LL factor on lattice from finite difference
- Three different magnitudes of total momentum:

$$
P_{\text {tot }}=(2,0,0) \frac{\pi}{L},(2,2,0) \frac{\pi}{L},(2,2,2) \frac{\pi}{L}
$$

- For each total momentum, three $\pi \pi$ operators:
- $\pi \pi(111,111)$
- $\pi \pi(311,111)$ (Not present in stationary frame calculation)
- $\pi \pi(311,311)$
- Only compute extra contractions and no need to generate operators in quark level
- Use symmetry to reduce the number of contractions from 7848 to 1037 by removing statistically redundant contractions

Moving frame

- Moving frame calculation is more vulnerable to excited state contamination error due to the denser spectrum of states

- As total momentum increases (\sqrt{s} decreases), the interaction between two pions decreases, making the inter-coupling between different states and operators decreases (will see that later)
\rightarrow
Multiple operators become less powerful

Moving frame

- Effect of additional operators is less significant
- No improvement in statistical error

Excited state error

- Simply look at plateau region is less reliable due to rapid increase of error as a function of $t_{\text {min }}$ (fake plateau)
- Including additional state in fitting function makes the result much noisier, even if we freeze the energy of that state
- Different patterns in data: The overlap matrix in moving frames are highly diagonal, while most elements have similar size in stationary frame $I=0$

$P_{C M}=(2,2,2)$	state $_{0}$	state $_{1}$	state $_{2}$
$\pi \pi(111,111)$	$1.0(0.0)$	$-0.07(1)$	$-0.035(8)$
$\pi \pi(111,311)$	$-0.013(6)$	$1.0(0.0)$	$-0.19(5)$
$\pi \pi(311,311)$	$-0.015(2)$	$0.05(2)$	$1.0(0.0)$

$P_{C M}=(0,0,0)$	state $_{0}$	state $_{1}$	state $_{2}$
$\pi \pi(111,111)$	$1.0(0.0)$	$0.47(2)$	$0.31(7)$
σ	$1.0(0.0)$	$-0.83(3)$	$-0.87(22)$
$\pi \pi(311,311)$	$0.053(9)$	$-0.84(12)$	$1.0(0.0)$

- Use different error estimation methods on data with different patterns

Excited state error

- Include one extra state in the optimal fit
- Energy is obtained from dispersive model
- Nearly diagonal overlap matrix \Rightarrow obtain overlap factors from single operator fit
- Operators couple to all states strongly \Rightarrow obtain overlap factors from multiple operator fit with smaller $t_{\text {min }}$
- Calculate the maximum energy difference between optimal fit and extra state fit

Final result

$P_{\text {tot }}$	I	$\sqrt{s}(\mathrm{MeV})$	δ	$\Delta \delta_{\text {dis }}$	$\Delta \delta_{\mathrm{FV}}$	$\Delta \delta_{\text {unphy }}$	$\Delta \delta_{\text {exc }}$
$(0,0,0) \frac{\pi}{L}$	0	471.0	$32.3(\mathbf{1 . 0})(1.4)$	0.64	0.32	0.83	$\mathbf{0 . 9 0}$
$(2,0,0) \frac{L}{L}$	0	435.1	$24.0(\mathbf{3 . 4})(7.6)$	0.46	0.23	0.71	$\mathbf{7 . 6}$
$(2,2,0) \frac{\pi}{L}$	0	365.6	$18.0(\mathbf{4 . 5})(4.9)$	0.36	0.18	0.47	$\mathbf{4 . 9}$
$(0,0,0) \frac{\pi}{L}$	2	565.4	$-10.98(22)(44)$	0.20	0.10	0.18	$\mathbf{0 . 3 4}$
$(2,0,0) \frac{\pi}{L}$	2	479.1	$-7.96(23)(29)$	0.16	0.08	0.03	$\mathbf{0 . 2 3}$
$(2,2,0) \frac{\pi}{L}$	2	386.7	$-4.48(40)(77)$	0.09	0.04	0.06	$\mathbf{0 . 7 6}$
$(2,2,2) \frac{\pi}{L}$	2	271.5	$-0.32(20)(63)$	0.01	0.00	0.02	$\mathbf{0 . 6 3}$

- Large statistical error with moving $I=0$
- Small excited state error with stationary $I=0$ and all $I=2$ cases
- Huge excited state error with moving $I=0$
σ operator might be critical

Final plot

Conclusion and future steps

Conclusions:

- Understand and solve Pi-Pi puzzle
- Calculate $\pi \pi$ scattering with $I=0$ and $I=2$ at seven different energies
- Estimate excited state error carefully

Future steps:

- Add moving σ operator in moving frame $I=0$ calculation
- Using ensembles with different lattice spacing to extrapolate to the continuum limit
- Combine this result with other lattice results to improve the dispersive prediction

