S-wave $\pi\pi$ I=0 and I=2 scattering with physical pion mass

Tianle Wang¹, Christopher Kelly¹

¹Department of Physics Columbia University

December 19, 2021

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why shall we perform this calculation?

- $K \to \pi\pi$ calculation
 - Need $E_{\pi\pi}$ and $A_{\pi\pi}$ to compute lattice matrix element M_{lat}
 - Need δ_0 and $\frac{d\delta_0}{dk}$ to compute LL factor
 - Understand $\pi\pi$ final state
- First calculation with physical pion mass and disconnected diagram
- A calculation on GPBC lattice
- 2015 results gives $\pi\pi$ energy which is $3\sigma(7\sigma$ with more statistics) higher than the phenomenological prediction(Pi-Pi puzzle)

 $\delta_0 = 23.8(4.9)(1.2)^{\circ}(PRL, 2015)$ = 19.1(2.5)°(1386confs) $\approx 36^{\circ}(Dispersion)$

- Possible reason: Excited state contamination for $\pi\pi$ state
- Solution: Introducing more operators

< □ > < 同 > < 回 > < Ξ > < Ξ

Operators list:

- Original ππ interpolating operator (O_a or ππ(111, 111)): two single π operator with momentum (±1, ±1, ±1)^π_L [π(111)]
- σ operator $(O_c \text{ or } \sigma)$: $\frac{i}{\sqrt{2}}(\bar{u}u + \bar{d}d)$. This operator has the same quantum number as $\pi\pi_{I=0}$
- Extra $\pi\pi$ operator (O_b or $\pi\pi(311, 311)$): two new π operator with one of their component replaced by $\pm \frac{3\pi}{L} [\pi(311)]$ General techniques:

• G-parity boundary condition

- All to all propagator
- Non-overlapping blocked bootstrap [cf. 1911.04582]

(日) (四) (日) (日) (日)

Fitting strategies and results

$$C_{ij}(t_{snk}, t = t_{snk} - t_{src}) = \langle O_i^{\dagger}(t_{snk}) O_j(t_{src}) \rangle - \langle 0 | O_i(t_{snk}) | 0 \rangle \langle 0 | O_j(t_{src}) | 0 \rangle \times \delta_{I,0}$$
(1)

$$C_{ij}(t) = \sum_{x=1}^{N} A_{ix} A_{jx} \left(e^{-E_x t} + e^{-E_x (T-t)} \right) + B_{ij} \times \delta_{I,2}$$
(2)

- Non-negligible excited state contamination in $\pi\pi(111, 111)$ operator
- σ significantly suppresses both excited state error and statistical error
- ππ(311, 311) improves statistical error

< □ > < 同 >

4/13

• Normalized overlap matrix also supports this argument.

	state ₀	state ₁	state ₂
$\pi\pi(111, 111)$	1.0(0.0)	0.47(2)	0.31(7)
σ	1.0(0.0)	-0.83(3)	-0.87(22)
$\pi\pi$ (311, 311)	0.053(9)	-0.84(12)	1.0(0.0)

• We decide to include all operators

$$\begin{split} \delta_0 &= 23.8(4.9)(1.2)^{\circ}(PRL,2015,1op) \\ &= 19.1(2.5)^{\circ}(1386\,confs,1op) \\ &\approx 36^{\circ}(Dispersion) \\ &= 32.3(1.0)^{\circ}(741\,confs,3op) \end{split}$$

- Better control over excited state error
- Better statistical error with smaller number of confs

Moving frame (non-zero total momentum)

- Two sets of π operator ($\pi(111)$ and $\pi(311)$) allow us to construct $\pi\pi$ operator with non-zero total momentum \rightarrow Moving frame calculation
- Phase shift at multiple \sqrt{s}
- LL factor on lattice from finite difference
- Three different magnitudes of total momentum:

$$P_{tot} = (2,0,0)\frac{\pi}{L}, (2,2,0)\frac{\pi}{L}, (2,2,2)\frac{\pi}{L}$$

- For each total momentum, three $\pi\pi$ operators:
 - $\pi\pi(111, 111)$
 - $\pi\pi(311, 111)$ (Not present in stationary frame calculation)
 - *π*π(311, 311)
- Only compute extra contractions and no need to generate operators in quark level
- Use symmetry to reduce the number of contractions from 7848 to 1037 by removing statistically redundant contractions

(日) (四) (日) (日) (日)

Moving frame

• Moving frame calculation is more vulnerable to excited state contamination error due to the denser spectrum of states

• As total momentum increases (\sqrt{s} decreases), the interaction between two pions decreases, making the inter-coupling between different states and operators decreases (will see that later) \rightarrow

Multiple operators become less powerful

- Effect of additional operators is less significant
- No improvement in statistical error

< □ > < 同 >

- Simply look at plateau region is less reliable due to rapid increase of error as a function of t_{min} (fake plateau)
- Including additional state in fitting function makes the result much noisier, even if we freeze the energy of that state
- Different patterns in data: The overlap matrix in moving frames are highly diagonal, while most elements have similar size in stationary frame I = 0

$P_{CM} = (2, 2, 2)$	state ₀	state ₁	state ₂	
$\pi\pi(111, 111)$	1.0(0.0)	-0.07(1)	-0.035(8)	
$\pi\pi(111, 311)$	-0.013(6)	1.0(0.0)	-0.19(5)	
$\pi\pi(311, 311)$	-0.015(2)	0.05(2)	1.0(0.0)	
$P_{-} = (0, 0, 0)$	ctata	ctata	ctata	
$P_{CM} = (0, 0, 0)$	state ₀	state ₁	state ₂	
$\pi\pi(111,111)$	1.0(0.0)	0.47(2)	0.31(7)	
σ	1.0(0.0)	-0.83(3)	-0.87(22)	
$\pi\pi(311, 311)$	0.053(9)	-0.84(12)	1.0(0.0)	

• Use different error estimation methods on data with different patterns

Image: A matrix and a matrix

9/13

- Include one extra state in the optimal fit
- Energy is obtained from dispersive model
- $\bullet\,$ Nearly diagonal overlap matrix $\Rightarrow\,$ obtain overlap factors from single operator fit
- Operators couple to all states strongly \Rightarrow obtain overlap factors from **multiple operator fit with smaller** t_{min}
- Calculate the maximum energy difference between optimal fit and extra state fit

Image: A math a math

P _{tot}	I	\sqrt{s} (MeV)	δ	$\Delta \delta_{ m dis}$	$\Delta \delta_{ m FV}$	$\Delta \delta_{\mathrm{unphy}}$	$\Delta \delta_{ m exc}$
$(0,0,0)\frac{\pi}{L}$	0	471.0	32.3 (1.0) (1.4)	0.64	0.32	0.83	0.90
$(2,0,0)\frac{\pi}{L}$	0	435.1	24.0 (3.4) (7.6)	0.46	0.23	0.71	7.6
$(2,2,0)\frac{\pi}{L}$	0	365.6	18.0 (4.5) (4.9)	0.36	0.18	0.47	4.9
$(0,0,0)\frac{\pi}{L}$	2	565.4	-10.98(22)(44)	0.20	0.10	0.18	0.34
$(2,0,0)\frac{\pi}{L}$	2	479.1	-7.96(23)(29)	0.16	0.08	0.03	0.23
$(2,2,0)\frac{\pi}{L}$	2	386.7	-4.48(40)(77)	0.09	0.04	0.06	0.76
$(2,2,2)\frac{\pi}{L}$	2	271.5	-0.32(20)(63)	0.01	0.00	0.02	0.63

- Large statistical error with moving I = 0
- Small excited state error with stationary I = 0 and all I = 2 cases
- Huge excited state error with moving I = 0 σ operator might be critical

(日) (四) (日) (日) (日)

Final plot

12/13

Conclusions:

- Understand and solve Pi-Pi puzzle
- Calculate $\pi\pi$ scattering with I = 0 and I = 2 at seven different energies
- Estimate excited state error carefully

Future steps:

- Add moving σ operator in moving frame I = 0 calculation
- Using ensembles with different lattice spacing to extrapolate to the continuum limit
- Combine this result with other lattice results to improve the dispersive prediction