Lattice Calculation of Δm_K

Bigeng Wang

Department of Physics and Astronomy University of Kentucky

> DWQ@25 December 13–17, 2021

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK)

Peter Boyle (Edinburgh)

Taku Izubuchi

Yong-Chull Jang

Chulwoo Jung

Christopher Kelly

Meifeng Lin

Hiroshi Ohki

Shigemi Ohta (KEK)

Amarjit Soni

CERN

Andreas Jüttner (Southampton)

Columbia University

Norman Christ

Duo Guo

Yikai Huo

Yong-Chull Jang

Joseph Karpie

Bob Mawhinney

Ahmed Sheta

Bigeng Wang

Tianle Wang

Yidi Zhao

University of Connecticut

Tom Blum

Luchang Jin (RBRC)

Michael Riberdy

Masaaki Tomii

Edinburgh University

Matteo Di Carlo

Luigi Del Debbio

Felix Erben

Vera Gülpers

Tim Harris

Raoul Hodgson

Nelson Lachini

Michael Marshall

Fionn Ó hÓgáin

Antonin Portelli

James Richings

Azusa Yamaguchi

Andrew Z.N. Yong

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

Michigan State University

Dan Hoying

Milano Bicocca

Mattia Bruno

Peking University

Xu Feng

University of Regensburg

Davide Giusti

Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen

Alessandro Barone

Jonathan Flynn

Ryan Hill

Rajnandini Mukherjee

Chris Sachrajda

University of Southern Denmark

Tobias Tsang

Stony Brook University

Jun-Sik Yoo

Sergey Syritsyn (RBRC)

$K^0 - \overline{K^0}$ mixing and Δm_K

 $K^0(S=-1)$ and $\overline{K^0}(S=+1)$, each having definite strangeness, which is conserved in the strong processes, mix through second order weak interactions.

$$i\frac{d}{dt}\left(\frac{K^{0}(t)}{K^{0}(t)}\right) = (M - \frac{i}{2}\Gamma)\left(\frac{K^{0}(t)}{K^{0}(t)}\right),\tag{1}$$

where the matrix M is given by:

$$M_{ij} = m_K^{(0)} \delta_{ij} + \mathcal{P} \sum_n \frac{\langle K_i^0 | H_W | n \rangle \langle n | H_W | K_j^0 \rangle}{m_K - E_n}, \quad (2)$$

If the small effects of CP violation are neglected, long-lived (K_L) and short-lived (K_S) are the two eigenstates:

$$K_S \approx \frac{K^0 - \overline{K^0}}{\sqrt{2}}, \quad K_L \approx \frac{K^0 + \overline{K^0}}{\sqrt{2}}.$$

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \mathrm{Re} M_{12}.$$

Figure: from wikipedia

Different life times:

$$K_S \xrightarrow{\text{CP}} \pi \pi,$$
 $2m_{\pi} \approx 280 \text{MeV} < m_K$

(3)
$$K_L \xrightarrow{\text{CP}} \pi \pi \pi$$
, $3m_{\pi} \approx 420 \text{MeV} \lesssim m_K$

Physics motivation

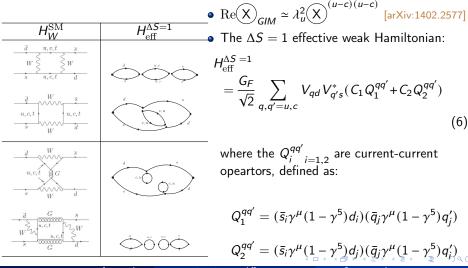
 Δm_K is given by:

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 \text{Re} M_{12} = 2 \mathcal{P} \sum_n \frac{\langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n}.$$
 (5)

- This quantity is:
 - Tiny compared to the K^0 mass ~ 498 MeV, and precisely measured $\Delta m_{K, exp} = 3.483(6) \times 10^{-12}$ MeV
 - 2 Sensitive to new physics: FCNC via 2nd order weak interaction
 - 3 Significant contribution from scale of $m_c(GIM \text{ mechanism})$
 - **Olympic** Difficult to compute by treating charm quark perturbatively: strong coupling at m_c scale

J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

Non-perturbative calculation of Δm_K using a renormalization scale above the charm quark mass



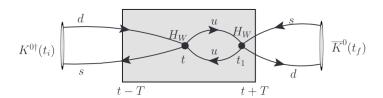
Extract Δm_K from single-integrated correlators

• The single-integrated correlator is defined as:

$$\mathcal{A}^{s}(t,T) \equiv \frac{1}{2!} \sum_{t_{1}=t-T}^{t+T} \langle 0|T\{\overline{K^{0}}(t_{f})H_{W}(t_{1})H_{W}(t)K^{0}(t_{i})\}|0\rangle \qquad (7)$$

• If we insert a complete set of intermediate states, we find:

$$\mathcal{A}^{s} = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \overline{K^{0}} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} (-1 + e^{(m_{K} - E_{n})(T+1)})$$
(8)



Status of the calculation

- "K_L K_S mass difference from Lattice QCD"
 - Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a $24^3 \times 64$ lattice with unphysical masses

- The K_L − K_S mass difference
 - Z. Bai, N. H. Christ, C. T. Sachrajda

EPJ Web of Conferences 175(2018), 13017

All diagrams included on a $64^3 \times 128$ lattice with physical masses on 59 configurations: $\Delta m_k = 5.5(1.7)_{stat} \times 10^{-12}$ MeV.

• "Calculation of the $K_L - K_S$ mass difference for physical quark masses" B. Wang

PoS LATTICE2019 (2019) 093

- All diagrams included on a $64^3 \times 128$ lattice with **physical masses** on **152** configurations: $\Delta m_k = 6.7(0.6)_{stat}(1.7)_{sys} \times 10^{-12}$ MeV.
- In this talk I will present the most recent Δm_K results and address studies performed on smaller lattices to estimate the systematic errors in our result.

Δm_K calculation with physical quark masses

• $64^3 \times 128 \times 12$ lattice with Möbius DWF and the Iwasaki gauge action with physical pion mass (136 MeV).

Lattice	Action	a^{-1}	Lattice	β	b+c	Ls	m_l	m _h	m_{res}
ensemble	(F+G)	(GeV)	Volume						
64I	MDWF+I	2.359(7)	$64^3 \times 128 \times 12$	2.25	2.0	12	0.000678	0.02661	0.000314

- Data analysis:
 - Sample AMA correction: [Phys. Rev. D88(9), 094503 (2013)]

data type	CG stop residual	
Sloppy	1e – 4	
Exact	1e – 8	

Diagram types	sample AMA correction	# of Sloppy	# of Exact
Type-3&4	Y	116	36
Type-1&2	N	0	36

The super-jackknife method is used to estimate the statistical errors for the AMA corrected data.

 Disconnected Type4 diagrams: save left- and right-pieces separately and use multiple source-sink separation for fitting.

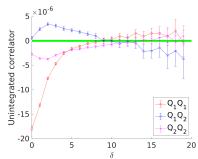
Calculation of Δm_K using single-integrated correlators

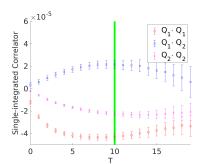
• Subtract light states from the averaged unintegrated correlator:

$$\widetilde{G}_{ij}^{\text{sub}}(\delta) = \widetilde{G}_{ij}(\delta) - \sum_{n \in \{n_i\}} \langle \overline{K^0} | Q_i' | n \rangle \langle n | Q_j' | K^0 \rangle e^{(m_K - E_n) \delta}$$
(9)

• Perform a single-integration over δ for the subtracted correlator between $\delta=0$ and $\delta=T$ to obtain:

$$\widetilde{\mathcal{A}}_{ij}^{\mathcal{S}}(T) = \sum_{\delta=1}^{I} \widetilde{G}_{ij}^{\text{sub}}(\delta) + \frac{1}{2} \widetilde{G}_{ij}^{\text{sub}}(0)$$
 (10)





Results for Δm_K preliminary

• We choose to use the results from the single-integration method:

Analysis method	$\Delta m_K/10^{-12} { m MeV}$	Δm_K (type1&2)	$\Delta m_K \text{(type3\&4)}$
Double-integration	6.31(0.98)	6.71(0.48)	-0.20(0.65)
Single-integration	6.34(0.57)	6.24(0.24)	0.33(0.50)

- Systematic errors:
 - Finite-volume corrections: small
 - "Effects of finite volume on the $K_L K_S$ mass difference"

N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, arXiv:1504.01170
$$\delta(\Delta m_K)^{FV} = -0.54(18) \times 10^{-12} \mathrm{MeV}$$
.

- Discretization effects are the largest source of systematic error:
 - effects from low-energy scale $\sim \Lambda_{\rm QCD}$
 - heavy charm quark, $\sim (m_c a)^2$ gives 25%
 - Another estimate based on HVP calculation is ~ 15%

Finite lattice spacing effects: scaling tests preliminary

 Scaling tests: perform calculations of three- and four-point quantities on two lattices with different lattice spacings. We need a coarser lattice to be compared with a finer lattice.

```
• 64I(2.4 GeV) ↔ 96I(2.8 GeV) Hard to do
• 24I(1.8 GeV) ↔ 32I(2.4 GeV) ✓
```

- We would like to see how large the discrepancy is
 - at a relatively small $m_c a$, which shows the finite lattice spacing effects from low-energy scale $\sim \Lambda_{\rm QCD}$.
 - at a relatively large $m_c a \sim 0.32$, which corresponds to the physical mass in our calculation on the 641 ensemble.

Lattice	Action	a^{-1}	Lattice	β	b+c	Ls	m_l	m _h	$m_{ m res}$
name	(F+G)	(GeV)	Volume						
241	DWF+I	1.785(5)	$24^3 \times 64 \times 16$	2.13	1.0	16	0.0050	0.0400	0.00308
32I	DWF+I	2.383(9)	$32^3 \times 64 \times 16$	2.25	1.0	16	0.0040	0.0300	0.000664

Finite lattice spacing effects: scaling tests preliminary

• Set up input masses to keep physics consistent on the two ensembles:

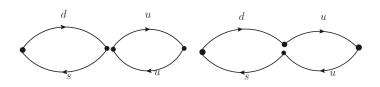
Lattice	m_{\times}	m_y	m_{π}	m_K	m_c 's
241	0.00667	0.0321	0.2079	0.3125	0.15:0.05:0.35
321	0.00649	0.0249	0.1557	0.2332	$(0.15:0.05:0.35)\frac{1.785}{2.383}$

- Quantities to be compared are:
 - 2-point:
 - ullet m_π , $m_K o$ confirm the valence masses yield consistent physical values.

Lattice	$N_{\rm conf}$	$m_{\pi}/{ m MeV}$	m_K/MeV
241	186	371.3(7)	556.2(7)
32I	222	371.4(6)	557.5(6)

- $m_D \rightarrow$ to calculate $m_c(m_D)$ to match the physics.
- 3-point figure-8 diagrams: light charm which has degenerate mass with m_u $\langle \pi | Z_{(84,1)} Q_+ | K^0 \rangle$, $\langle \pi | Z_{(20,1)} Q_- | K^0 \rangle$,
- 4-point single-integrated correlators(connected diagrams only) with m_c dependency:
 - Integrated correlators: with operator combinations: Q_+Q_+ and Q_-Q_-

Scaling test - three-point figure-8 results preliminary



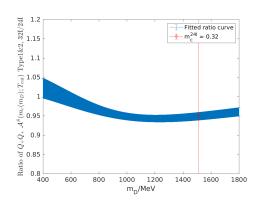
		Z factors		Matrix elements	in physical Unit	
μ/GeV	Op.	32I	241	321	241	Scaling violation
'		$(a^{-1} = 2.38 \text{GeV})$	$(a^{-1} = 1.78 \text{GeV})$	$(a^{-1} = 2.38 \text{GeV})$	$(a^{-1} = 1.78 \text{GeV})$	
2.15	Q_{+}	0.52997(11)	0.47143(8)	0.003957(18)	0.004045(18)	-2.19 %
	Q_{-}	0.58755(14)	0.57493(26)	0.011949(65)	0.009936(59)	18.39 %
2.64	Q_{+}	0.52489(6)	0.46996(6)	0.003919(18)	0.004032(18)	-2.84 %
	Q_{-}	0.60358(11)	0.58239(11)	0.012275(67)	0.010065(60)	19.78 %

Table: The Z factors of NPR in $(\gamma_{\mu}, \gamma_{\mu})$ scheme and $\langle \pi | Q_{\pm} | K^0 \rangle$ (figure-8 only) in physical units on the two lattice ensembles and different scale μ .

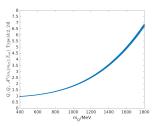
Comment: $K \to \pi\pi$ matrix elements, $O \in (8,8)$ irrep also show similarly large finite lattice spacing errors. [PhysRevD.91.07450]

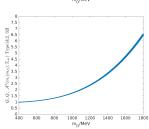
Scaling test - four-point Q_+Q_+ single-integrated correlators

preliminary



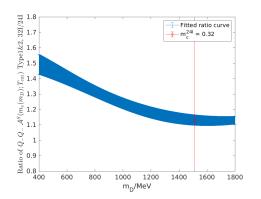
- at low m_D values, the ratio is consistent with 1.
- at $m_c a = 0.32$, which corresponds to the physical charm mass on 64I, the scaling violation is about 5%.



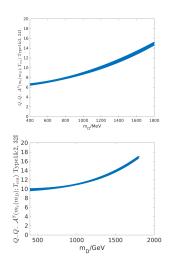


Scaling test - four-point Q_-Q_- single-integrated correlators

preliminary



- at low m_D values, the ratio is about 1.45. The scaling violation: $\sim 40\%$.
- at $m_c a = 0.32$, the scaling violation: $\sim 14\%$.



Summary of the scaling tests preliminary

Quantities compared between the two lattice spacings are:

- 2-point:
 - m_π, m_K √
 - m_D √
- 3-point: light charm which has degenerate mass with m_u :

```
\langle \pi | Z_{(84,1)} \overset{\circ}{Q}_{+} | K^0 \rangle \( \square\) 3\% difference \langle \pi | Z_{(20,1)} \overset{\circ}{Q}_{-} | K^0 \rangle \( \square\) 20\% difference
```

Comment: $K \to \pi\pi$ matrix elements \in (8,8) irrep also show similarly large finite lattice spacing errors. [PhysRevD.91.07450].

• 4-point(connected only) with m_c dependency: single-integrated correlators: with operators

$$Z^2_{(84,1)} Q_+ Q_+ \checkmark$$
 5% difference $Z^2_{(20,1)} Q_- Q_- !$ 40% difference

We estimate the finite lattice spacing error in our Δm_K calculation to be of order of 40%.

Conclusion and outlook

• Our **preliminary** result for Δm_K based on 152 configurations is:

$$\Delta m_{K} = 5.8(0.6)_{\text{stat}}(2.3)_{\text{sys}} \times 10^{-12} \text{MeV},$$
 (11)

to be compared to the experimental value:

$$(\Delta m_K)^{exp} = 3.483(6) \times 10^{-12} \text{MeV}.$$
 (12)

We find reasonable agreement given the large finite lattice spacing errors.

- Outlook:
 - Future calculations:
 - Δm_K : on $96^3 \times 192$ lattice with $a^{-1} = 2.8$ GeV
 - Better estimate of finite lattice spacing effect:
 64I(2.4 GeV) ↔ 96I(2.8 GeV) continuum limit to be explored
 - Further improvement of the precision to $\sim 5\%$ level.
 - long-distance ϵ_K : Joe Karpie, improve the accuracy of ϵ_K to sub-percent level.

Thanks for your attention!

Backup slides

$K^0 - \overline{K^0}$ mixing and Δm_K

Two particles: K^0 : $(d\bar{s}, S = -1)$ and $\overline{K^0}$ $(\bar{d}s, S = +1)$.

- Strong interactions: conserve strangeness
- Weak interactions: H_W changes strangeness, $\Delta S = 1$.

Second-order weak process: $K^0 \leftrightarrow \overline{K^0}$

$$i\frac{d}{dt}\left(\frac{K^{0}(t)}{K^{0}(t)}\right) = (M - \frac{i}{2}\Gamma)\left(\frac{K^{0}(t)}{K^{0}(t)}\right). \tag{13}$$

If the small effects of CP violation are neglected, long-lived (K_L) and short-lived (K_S) are the two eigenstates:

$$K_S \approx \frac{K^0 - \overline{K^0}}{\sqrt{2}}, \quad K_L \approx \frac{K^0 + \overline{K^0}}{\sqrt{2}}.$$
 (14)

Figure: figure from wikipedia

Different life times: $K_S \xrightarrow{\mathrm{CP}} \pi \pi$, $2m_\pi \approx 280 \mathrm{MeV} < m_K$ $K_L \xrightarrow{\mathrm{CP}} \pi \pi \pi$, $3m_\pi \approx 420 \mathrm{MeV} \lesssim m_K$

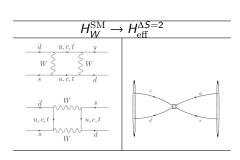
The operator product expansion(OPE) and Δm_K

OPE: full theory $H_W \xrightarrow{\text{integrate out}} H_{\text{eff}} = \sum_j C_j(\mu) O_j(\mu)$, renormalized at scale μ $C_i(\mu)$: short-distance, perturbative; $O_i(\mu)$: long-distance, non-perturbative

$H_W^{ m SM}$	$\mathcal{H}_{ ext{eff}}^{\Delta \mathcal{S}=1}$	$\mathcal{H}_{ ext{eff}}^{\Delta S=2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d u, c d u, c d	s
$\underbrace{\begin{array}{c} u,c,t\\ s\end{array}}_{W}\underbrace{\begin{array}{c} u,c,t\\ d\end{array}}_{W}$	c, u d	d s
$\begin{array}{c c} \overrightarrow{d} & \overrightarrow{W} & \overrightarrow{s} \\ \hline u,c,t & \exists G \\ \hline & \overrightarrow{s} & \overrightarrow{d} \end{array}$	c,u d	
$\begin{array}{c c} \overrightarrow{d} & G & \overline{s} \\ \hline W & u,c,t \\ \hline & s & G \\ \hline \end{array}$		

Earlier calculations of Δm_K : charm quark is integrated out

The specific division $\mu < m_c$ in OPE where charm quark is integrated out. short-distance box only: leaving out:



QCD penguin	aisconnectea
$\begin{array}{c c} \overrightarrow{d} & \overrightarrow{W} & \overrightarrow{s} \\ \hline u, c, t & \overrightarrow{G} \\ \hline s & \overrightarrow{W} & \overrightarrow{d} \\ \hline \end{array}$	$\begin{array}{c} \overrightarrow{d} & \overrightarrow{G} & \overrightarrow{s} \\ \overrightarrow{W} & \overrightarrow{u}, c, t \\ \overrightarrow{w} & \overrightarrow{u}, c, t \\ & \overrightarrow{s} & \overrightarrow{G} & \overrightarrow{d} \end{array}$
1 1 .	

$\mathcal{H}_{eff}^{\Delta S=2}=C$	$(\mu) O_{LL}(\mu),$	(15)
------------------------------------	----------------------	------

$$O_{II} = (\overline{s}d)_{V-A}(\overline{s}d)_{V-A}, \quad (16)$$

$$\begin{array}{c|c} \text{long-distance box} \\ \hline K^0 \xrightarrow{\pi^0, \eta, \eta'} \overline{K^0} \\ \hline H_W & H_W \end{array} \qquad \begin{array}{c|c} K^0 \xrightarrow{\pi} \overline{K}^0 \\ \hline H_W & H_W \end{array}$$

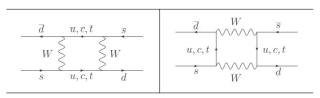
Only 36% accuracy in the next-to-next-to-leading-order(NNLO) calculation of the QCD correction factors using perturbation theory: slow convergence of the perturbative series

J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)

→ better to treat charm quark non-perturbatively on the lattice

GIM mechanism and the short- and long-distance characteristics of Δm_K

GIM mechanism: flavor-changing neutral currents(FCNC) are suppressed in loop diagrams \rightarrow charm quark \rightarrow the CKM matrix



- Quark mixing: at each weak vertex \rightarrow a product of CKM matrix elements $V_{qd}V_{q's}^*$, where q,q'=u,c,t.
- Define $\lambda_q = V_{q,d} V_{q,s}^*$, q = u, c, t, unitarity of the CKM matrix $\rightarrow \lambda_u + \lambda_c + \lambda_t = 0 \rightarrow \lambda_c = -\lambda_u \lambda_t$
- Specific diagram with GIM mechanism:

$$(X)_{GIM} = \lambda_u^2 (X)^{(u-c)(u-c)} + \lambda_t^2 (X)^{(t-c)(t-c)} + 2\lambda_u \lambda_t (X)^{(u-c)(t-c)}$$

• For $\Delta m_K = 2 \text{Re} M_{12}$, the first term dominates.

Overview of the calculation of Δm_K

Quantities to be calculated are:

- two-point correlation functions:
 - meson masses: m_{π} , m_{K} , $m_{\pi\pi}$, m_{η}
 - normlization factors of meson interpolating operators: N_π , N_K , $N_{\pi\pi}$, N_η
- three-point correlation functions:
 - light state matrix elements to be subtracted: $\langle \pi | Q_i' | K^0 \rangle = \langle \pi | Q_i | K^0 \rangle c_{\rm si} \langle \pi | \overline{s} d | K^0 \rangle$, and $\langle \pi \pi_{I=0} | Q_i c_{\rm pi} \overline{s} \gamma_5 d | K^0 \rangle$.
 - coefficients of the $\bar{s}d$ and $\bar{s}\gamma_5d$ operators:

$$c_{\mathrm{s}i} = \frac{\langle \eta | Q_i | K^{\mathbf{0}} \rangle}{\langle \eta | \overline{s}d | K^{\mathbf{0}} \rangle}, \quad c_{\mathrm{p}i} = \frac{\langle 0 | Q_i | K^{\mathbf{0}} \rangle}{\langle 0 | \overline{s} \gamma_{\mathbf{5}}d | K^{\mathbf{0}} \rangle}.$$

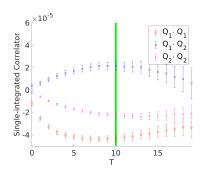
- four-point correlation functions:
 - unintegrated correlation functions calculated from diagrams having light state contribution subtracted:

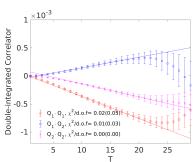
$$\widetilde{\widetilde{G}}^{\mathrm{sub}}(\delta) = \widetilde{\widetilde{G}}(\delta) - \sum\limits_{n \in \{n_l\}} \langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{(m_K - E_n) \, \delta}$$

• single-integrated correlation functions:

$$\widetilde{\mathcal{A}}^{S}(T) = \sum_{\delta=1}^{T} \widetilde{G}^{\mathrm{sub}}(\delta) + \frac{1}{2} \widetilde{G}^{\mathrm{sub}}(0) \to \Delta m_{K}$$

Calculation of Δm_K using double-integrated correlators





Analysis method	Δm_K
Double-integration	6.31(0.98)
Single-integration	6.34(0.57)

Scaling of diagrams with a specific topology

- A collection of diagrams to be studied in isolation in a lattice calculation
 - Fermion propagators contracted with a fixed topology.
 - The path integral provides a sum over all possible gluon emissions, gluon self-interactions and closed fermion loop insertions.
- Conditions for a continuum limit:
 - The quark propagator topology DOES NOT introduce new divergent sub-diagrams not present in QCD. The renormalizability and chiral symmetry of DWF QCD will lead to a continuum limit with a ca² scaling behavior.
 - The quark propagator topology DOES introduce new divergent sub-diagrams not present in QCD: include these same diagrams when performing the NPR subtraction.

Non-perturbative renormalizations

• Renormalization of lattice operator $Q_{1,2}$ in 3 steps:

$$C_{i}^{lat} = C_{a}^{\overline{MS}} (1 + \Delta r)_{ab}^{RI \to \overline{MS}} Z_{bi}^{lat \to RI}$$

• Non-perturbative Renormalization: from the lattice to the RI-SMOM

$$Z^{lat \to RI} = \begin{bmatrix} 0.5642 & -0.03934 \\ -0.03934 & 0.5642 \end{bmatrix}$$
 (17)

ullet Perturbation theory: from the RI-SMOM to the \overline{MS}

C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

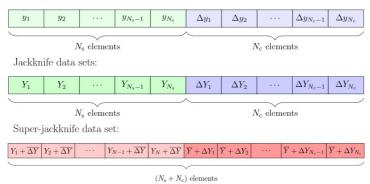
$$\Delta r^{RI \to \overline{MS}} = 10^{-3} \times \begin{bmatrix} -2.28 & 6.85 \\ 6.85 & -2.28 \end{bmatrix}$$
 (18)

• Use Wilson coefficients in the \overline{MS} scheme

G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

$$C^{\overline{MS}} = 10^{-3} \times [-0.260 \quad 1.118]$$
 (19)

The jackknife and super-jackknife method



The mean of the fitting parameter Θ is given by:

$$\overline{\Theta} = \frac{1}{N_s + N_c} \sum_{i=1}^{N_s + N_c} \Theta_i, \quad \sigma_{\overline{\Theta}}^2 = \frac{N_s + N_c - 1}{N_s + N_c} \sum_{i=1}^{N_s + N_c} (\Theta_i - \overline{\Theta})^2.$$
 (20)

Scaling test - three-point $K o \pi$ diagrams

