Novel approaches to search for New Physics in rare charm decays

Dominik Mitzel

TU Dortmund

Particle Physics Seminar at BNL

18 November 2021

The Standard Model of Particle Physics 1

https://www.quantumdiaries.org/wp-content/uploads/2011/06/cernmug.jpg

What is dark matter?

Where does the matter-antimatter asymmetry come from?

Why do neutrinos have mass?

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \\ &+ \mathcal{V}: \mathcal{Y}_{ij} \mathcal{V}_{j} \mathcal{P} + h.c. \\ &+ \mathcal{P}_{A} \mathcal{P} / - \mathcal{V} (\mathcal{P}) \end{aligned}$

https://www.quantumdiaries.org/wp-content/uploads/2011/06/cernmug.jpg

Energy frontier

 $E = mc^2$

Energy frontier

 $E = mc^2$

 $\hbar/2 \le \Delta t \ \Delta E$

Energy frontier

 $E = mc^2$

• Rates (branching fractions)

$$\sim \mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

- CP Asymmetries ~ $|\mathscr{A}_{SM}||\mathscr{A}_{NP}|\sin\Delta\phi_{NP}$
- Angular distributions

B-physics: $b \to s\ell^+\ell^-$, $b \to d\ell^+\ell^-$

Angular distributions

B-physics:
$$b \to s\ell^+\ell^-$$
, $b \to d\ell^+\ell^-$

Flavour anomalies in $b \rightarrow s\ell^+\ell^-$ transitions!

• Angular distributions

• Rates (branching fractions)

$$\sim \mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

• CP Asymmetries ~ $|\mathscr{A}_{SM}||\mathscr{A}_{NP}|\sin\Delta\phi_{NP}$

- B-physics: $b \to s\ell^+\ell^-, b \to d\ell^+\ell^-$
- Kaon-physics: $s \to d\ell^+ \ell^-$

- Angular distributions
 - ~ Lorentz-Structure $\overline{\psi}\Gamma_{NP}\psi$

 $\sim |\mathcal{A}_{SM}| |\mathcal{A}_{NP}| \sin \Delta \phi_{NP}$

B-physics:
$$b \to s\ell^+\ell^-$$
, $b \to d\ell^+\ell^-$

Kaon-physics: $s \to d\ell^+ \ell^-$

Charm-physics: $c \rightarrow u\ell^+\ell^-$

Angular distributions

• Rates (branching fractions)

typically $D \rightarrow X\mu^+\mu^- \sim O(10^{-12})$ (**extremely suppressed**)

• CP Asymmetries

Im(V*_{cb}V_{ub}/V*_{cd}V_{ud}) ~10⁻³ Acp~0

Angular distributions

no lepton axial vector coupling **Parity conservation**

- Rates (branching fractions)
 - $D \rightarrow X|+|-$ up to $O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

- Rates (branching fractions)
 - $D \rightarrow X|+|-up \text{ to } O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

Charm-physics: $c \rightarrow u\ell^+\ell^-$

- Rates (branching fractions)
 - $D \rightarrow XI^{+}I^{-}$ up to $O(10^{-7})^{*}$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

Charm-physics: $c \rightarrow u\ell^+\ell^-$

- Rates (branching fractions)
- $D \rightarrow X|+|-$ up to $O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

Glimpsing at the **b**(ig) brother

Glimpsing at the **b**(ig) brother

The curse of QCD

• $m_c \sim \Lambda_{QCD}$ leads to large uncertainties coming from QCD effects

The curse of QCD

- $m_c \sim \Lambda_{QCD}$ leads to large uncertainties coming from QCD effects
- often, non-perturbative long distance (resonance) dynamics dominate!

For long, rare charm has been considered as less promising! (Disclaimer: It's not)

We need to find ways to overcome (even profit from) LD contributions

$D^0 \rightarrow \mu^+ e^-$	$D_{(s)}^+ \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(s)}^+ \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D_{(c)}^+ \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^{\dagger} \rightarrow (\varphi, \varphi, \omega) \gamma$
(3)	$D^0 \rightarrow K^{*0} l^+ l^-$	$D^0 \rightarrow \phi V(\rightarrow ll)$	$D_s^+ \to \pi^+ \phi(\to ll)$

LFV, LNV,	BNV			FC	NC				VMD	1	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \to \pi^0$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$^+ \rightarrow \pi^+ \phi$	(→ <i>ll</i>)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \rightarrow \rho$	1+1-	$D^0 \rightarrow D^0$	$K^{V}(\rightarrow$	ll) D	${}^{0} \rightarrow K^{-}\pi$ ${}^{0} \rightarrow K^{*0}\pi$	$V^+V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^0 \to K^*$ $D^0 \to \phi$	'K ⁻ l ⁺ l ⁻ l ⁺ l ⁻	$D^{\circ} \rightarrow$	ŶΫ	D	$\rightarrow \Lambda V$	(→ II)

$D^0 \rightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D^{(3)}_{(s)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow \pi^+ \phi(\rightarrow ll)$
	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_s \rightarrow \pi \ \psi(\rightarrow n)$

LFV, LNV,	BNV			FC	NC				VMD]	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^0$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$^+ \rightarrow \pi^+ \phi$	(→ <i>ll</i>)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \rightarrow \rho$	<i>l</i> + <i>l</i> -	$D^0 \rightarrow D^0 \rightarrow$	$K V (\rightarrow$	ll) D	$K^0 \to K^- \pi$ $K^0 \to K^{*0} V$	$V^+V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^0 \rightarrow K^0$ $D^0 \rightarrow \phi$	к 11 l+l-	<i>ч</i> –	11	D	, R ,	(,,,)

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

8

$D^0 \rightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(s)}^+ \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow -^+ A(\rightarrow II)$
(3)	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_{\rm s} \rightarrow \pi \ \varphi(\rightarrow ll)$

LFV, LNV,	BNV			FC	NC				VMD]	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^{-1}$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$\phi^+ \to \pi^+ \phi$	(→ <i>ll</i>)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \to \rho$ $D^0 \to K^+$	l^+l^-	$D^{0} \rightarrow D^{0} \rightarrow$	$\begin{array}{c} K V(\rightarrow \\ \gamma\gamma \end{array}$	ll) D D	$K^0 \to K^- \pi$ $M^0 \to K^{*0} V$	$V^+V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D \to K$ $D^0 \to \phi$	l ⁺ l ⁻	2 /	//			

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

Very rare decays

- purely leptonic
- local regions in decay phase space of multibody decays
 reduced hadronic incertainties

$D^0 \rightarrow \mu^+ e^-$
$D^0 \rightarrow pe^-$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$

$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	
$D^+_{(s)} \rightarrow K^+ l^+ l^-$	
$D^0 \to K^- \pi^+ l^+ l^-$	
$D^0 \to K^{*0} l^+ l^-$	

$$\begin{array}{ll} D^{0} \rightarrow \pi^{-}\pi^{+}V(\rightarrow ll) & D^{0} \rightarrow K^{*0}\gamma \\ D^{0} \rightarrow \rho & V(\rightarrow ll) & D^{0} \rightarrow (\phi, \rho, \omega) & \gamma \\ D^{0} \rightarrow K^{+}K^{-}V(\rightarrow ll) & D_{s}^{+} \rightarrow \pi^{+}\phi(\rightarrow ll) \\ D^{0} \rightarrow \phi & V(\rightarrow ll) & D_{s}^{+} \rightarrow \pi^{+}\phi(\rightarrow ll) \end{array}$$

LFV, LNV,	BNV			FC	NC				VMD	F	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi^{0}$ $D^{0} \to \rho^{0}$ $D^{0} \to K^{+}$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow D^0 $	$\frac{K^{+}\pi^{-}V(-)}{K^{*0}}V(-)$	$ \rightarrow ll) D^{\dagger} \\ ll) D^{0} \\ D^{0} \\ D^{0} $	$f^{+} \to \pi^{+} \phi$ $f^{0} \to K^{-} \pi$ $f^{0} \to K^{*0} V$	(→ ll) ⁺ V(→ ll) 7(→ ll)
$D^0 \to X^{}l^+l^+$						$D^0 \rightarrow \phi$	1+1-					

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

Very rare decays

- purely leptonic
- local regions in decay phase space of multibody decays
 reduced hadronic uncertainties

Rare resonance dominated & radiative decays

• test of lepton-universality

'clean' SM null-tests

- CP asymmetries
- angular distributions

$D^0 \rightarrow \mu^+ e^-$
$D^0 \rightarrow pe^-$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$

$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	
$D^+_{(s)} \rightarrow K^+ l^+ l^-$	
$D^0 \rightarrow K^- \pi^+ l^+ l^-$	
$D^0 \to K^{*0} l^+ l^-$	

$$D^{0} \rightarrow \pi^{-}\pi^{+}V(\rightarrow ll) \qquad D^{0} \rightarrow K^{*0}\gamma$$

$$D^{0} \rightarrow \rho \quad V(\rightarrow ll) \qquad D^{0} \rightarrow (\phi, \rho, \omega) \quad \gamma$$

$$D^{0} \rightarrow K^{+}K^{-}V(\rightarrow ll) \qquad D^{s} \rightarrow \pi^{+}\phi(\rightarrow ll)$$

$$D^{0} \rightarrow \phi \quad V(\rightarrow ll) \qquad D^{s}_{s} \rightarrow \pi^{+}\phi(\rightarrow ll)$$

LFV, LNV,	BNV			FC	NC				VMD	F	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^0$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow D^0 \rightarrow$	$\frac{K^{+}\pi^{-}V(-)}{K^{*0}}V(-)$	→ II) D [*] II) D ⁽	$f^+ \to \pi^+ \phi$ $f^0 \to K^- \pi$	$(\rightarrow ll)$
$D^{0} \rightarrow X^{0} \mu^{+} e^{-}$ $D^{0} \rightarrow X^{} l^{+} l^{+}$			2	,		$D^{0} \rightarrow K^{+}$ $D^{0} \rightarrow \phi$	K ⁻ l ⁺ l ⁻	$D^0 \rightarrow$	γγ	D ⁰	$^{0} \rightarrow K^{*0} V$	7(→II)

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

Very rare decays

- purely leptonic
- local regions in decay phase space of multibody decays
 reduced hadronic incertainties

Rare resonance dominated & radiative decays

- test of lepton-universality
- CP asymmetries

'clean' SM null-tests

angular distributions

The most recent experimental players 9

The most recent experimental players 9

Searches in decay rates

Search for rare and forbidden semi-leptonic decays Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

 LFV, LNV, BNV
 FCNC
 VMD
 Radiative

 0
 10⁻¹⁵
 10⁻¹⁴
 10⁻¹²
 10⁻¹¹
 10⁻¹⁰
 10⁻⁹
 10⁻⁸
 10⁻⁷
 10⁻⁶
 10⁻⁵
 10⁻⁴

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for the rare decays $D \rightarrow hl \pm l^{(+)} \mp l^{(+)}$

EPJC 80 (2020) 65

For forbidden modes any signal = NP

 Non-forbidden modes dominated by intermediate resonances

 $q^2 = m^2(\mu^+\mu^-) [GeV^2/c^4]$

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible

12

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+ \mu^-]$ as normalisation

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+ \mu^-]$ as normalisation

EPJC 80 (2020) 65

12

Search for the rare decays $D \rightarrow hI^{\pm}I^{(+)\mp}$

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+ \mu^-]$ as normalisation
- Analysis presented uses 1.6/fb data collected in 2016
 JHEP 06 (2021) 44

 $q^2=m^2(\mu^+\mu^-)$ [GeV²/c⁴]

12

Muon Detectors

40 millions (!) collisions per second

$$D^+ \to h^+ \ell^+ \ell^-$$

$$\tau_{D^+} = 1 \times 10^{-12} s$$

Topologic criteria

Topologic criteria

Kinematic criteria

$$\mathscr{B}(D_{(s)}^{+} \to h^{+}\ell^{+}\ell^{-}) = \frac{N(D_{(s)}^{+} \to h^{+}\ell^{+}\ell^{-})}{N(D_{(s)}^{+})} \cdot \frac{1}{\epsilon(D_{(s)}^{+} \to h^{+}\ell^{+}\ell^{-})}$$

JHEP 06 (2021) 044

presented by Martino Borsato, Electron reconstruction at LHCb and Belle II, GDR-InF workshop - LPNHE 8-9 July 2019

All mass spectra well described by background only hypothesis

- No significant signal found [1.6/fb (2016)]
- Improved limits by several orders of magnitude
- See JHEP 06 (2021) 044 for limit on D_s^+ modes

update with full Run2 data Set in preparation

New Physics in CP asymmetries & angular distributions

NP searches in CP asymmetries

• Observation of CPV [$\Delta A_{CP} = (15.4 \pm 2.9) \times 10^{-4}$] in charm leaves room for NP

PRL 122 (2019) 211803

NP searches in CP asymmetries

• Observation of CPV [$\Delta A_{CP} = (15.4 \pm 2.9) \times 10^{-4}$] in charm leaves room for NP PRL 122 (2019) 211803

 NP interpretations → measurable CP asymmetries in rare charm (e.g Z' models)

PRD 101 (2020) 115006

NP searches in CP asymmetries

- Observation of CPV [$\Delta A_{CP} = (15.4 \pm 2.9) \times 10^{-4}$] in charm leaves room for NP PRL 122 (2019) 211803
- NP interpretations → measurable CP asymmetries in rare charm (e.g Z' models)
 PRD 101 (2020) 115006

 Enhancement in vicinity of resonances, we profit from them

"resonance enhanced"

$$\cong A_{CP}^{NP} \approx \mathcal{O}(\%)$$

remember: $A_{CP}^{SM} pprox 0$

NP searches in angular distributions

23

 Absence of axial vector couplings (pure vector current!) in lepton system is distinctive feature

NP searches in angular distributions

23

- Absence of axial vector couplings (pure vector current!) in lepton system is distinctive feature
 - New particles with (pseudo)scalar, tensorial or axial vector couplings lead to modifications, independent of hadronic uncertainties which allow for clear null tests

"Angular analysis of $D^0 \to \pi^- \pi^+ \mu^+ \mu^-$ and $D^0 \to K^- K^+ \mu^+ \mu^-$ decays and search for CP violation"

LHCb-PAPER-2021-035 arXiv:2111.03327

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays at LHCb

• rarest charm meson decays observed, dominated by resonant contributions

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$

PRL 119 (2017) 181805

- measurement selected angular and CP asymmetries with 5/fb consistent with SM PRL 121 (2018) 091801
- TODAY: First full angular analysis with 9/fb from 2011-2018 arXiv:2111.03327
 - select D⁰ from flavour sepecific D*+→ D⁰π⁺ decays

 $N(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) \sim 3500$ $N(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) \sim 300$

Differential decay rate

arXiv:2111.03327

 $\frac{d\Gamma}{d\cos\theta_{\mu}d\cos\theta_{h}d\phi} = I_{1} + I_{2} \cdot \cos 2\theta_{\mu} + I_{3} \cdot \sin^{2} 2\theta_{\mu} \cos 2\phi + I_{4} \cdot \sin 2\theta_{\mu} \cos \phi + I_{5} \cdot \sin \theta_{\mu} \cos \phi + I_{5} \cdot \sin \theta_{\mu} \cos \phi + I_{6} \cdot \cos \theta_{\mu} + I_{6} \cdot \cos \theta_{\mu} + I_{6} \cdot \cos \theta_{\mu} + I_{7} \cdot \sin \theta_{\mu} \sin \phi + I_{8} \cdot \sin 2\theta_{\mu} \sin \phi + I_{8} \cdot \sin \theta_{\mu} \sin \theta_{\mu} \sin \phi + I_{8} \cdot \sin \theta_{\mu} \sin \theta_{\mu} \sin \theta_{\mu} \sin \theta_{\mu} \sin \theta_{\mu}$

 $I_9 \cdot \sin^2 \theta_{\mu} \sin 2\phi$

Differential decay rate

arXiv:2111.03327

• measure p^2 , $\cos \theta_h$ integrated* observables $\langle I_i \rangle$ separate for D^0 and D^0

$$\langle I_{2,3,6,9} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \int_{-1}^{1} d\cos\theta_h \ I_{2,3,6,9}$$

$$\langle I_{4,5,7,8} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \left[\int_{-1}^{0} d\cos\theta_h - \int_{0}^{1} d\cos\theta_h \right] \ I_{4,5,7,8}$$

*optimal for p-Wave in hadron system

Measured observables and binning

arXiv:2111.03327

27

• report flavour average $\langle S_i \rangle$ and CP asymmetries $\langle A_i \rangle$

$$\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right] \qquad \langle S_{5,6,7} \rangle \stackrel{\text{SM}}{=} 0 \langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right] \qquad \langle A_i \rangle \stackrel{\text{SM}}{=} 0 \text{ for CP even (CP odd) coefficients}$$

• updated measurement of A_{CP}

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

Measured observables and binning

• report flavour average $\langle S_i \rangle$ and CP asymmetries $\langle A_i \rangle$

updated measurement of A_{CP}

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

• 17 obs./channel [12 SM null-tests] in $m(\mu^+\mu^-)$ regions ["resonance enhanced NP effects"]

	$m(\mu^+\mu^-) [\text{MeV}/c^2]$						
Decay mode	low mass	η	$\eta \qquad ho/\omega$		ϕ		high mass
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	< 525	NS	> 565		NA		NA
$D^0 \to \pi^+\pi^-\mu^+\mu^-$	< 525	NS	565-780	780-950	950-1020	1020-1100	NS

[NA = not available NS = no signal]

arXiv:2111.03327 Weighted candidates / 10 MeV/ c^3 600F LHCb φ 9 fb⁻ 500Ē $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ 400 300 ρ / ω 200 100 500 1000 1500 $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] 90 Weighted candidates / 20 MeV/ c^2 80 - LHCb 70 ₽ 9 fb⁻¹ $D^0 \rightarrow K^+ K^- \mu^+ \mu^ \rho | \omega$ 50 40 30 20 10 400 600 800 $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}]

28

• measure angular observables via yield asymmetries, eg:

$$\langle I_6 \rangle = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$

• measure angular observables via yield asymmetries, eg:

$$\langle I_6 \rangle = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$

• measure angular observables via yield asymmetries, eg:

$$\langle I_6 \rangle = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu}$$
$$\langle I_6 \rangle = \frac{N(\cos\theta_\mu > 0) - N(\cos\theta_\mu < 0)}{N(\cos\theta_\mu > 0) + N(\cos\theta_\mu < 0)}$$

[see LHCb-PAPER-2021-035 for others]

• correct for acceptance effects across the 5D phase space

• correct for acceptance effects across the 5D phase space

• correct A_{CP} for nuisance asymmetries

$$A_{CP}^{raw}(f) = \frac{N(D^{*+} \to D^{0}(\to f)\pi^{+}) - N(D^{*-} \to \overline{D^{0}}(\to f)\pi^{-})}{N(D^{*+} \to D^{0}(\to f)\pi^{+}) + N(D^{*-} \to \overline{D^{0}}(\to f)\pi^{-})} \approx A_{CP} + A_{d}(\pi^{\pm}) + A_{p}(D^{*\pm})$$
[use $D^{*+} \to D^{0}(\to K^{+}K^{-})\pi^{+}$ decays]

arXiv:2111.03327

[use $D^{*+} \rightarrow D^0 (\rightarrow K^+ K^-) \pi^+$ decays]

29

correct for acceptance effects across the 5D phase space

• correct A_{CP} for nuisance asymmetries

$$A_{CP}^{raw}(f) = \frac{N(D^{*+} \to D^0(\to f)\pi^+) - N(D^{*-} \to \overline{D^0}(\to f)\pi^-)}{N(D^{*+} \to D^0(\to f)\pi^+) + N(D^{*-} \to \overline{D^0}(\to f)\pi^-)} \approx A_{CP} + A_d(\pi^{\pm}) + A_p(D^{*\pm})$$

• evaluate systematic uncertainties

sypically
$$\frac{\sigma_{sys}}{\sigma_{stat}} \sim (10 - 50)\%$$

limited by statistics!

Flavour-averaged observables $\langle S_i \rangle$

arXiv:2111.03327

30

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

Flavour-averaged observables $\langle S_i \rangle$

arXiv:2111.03327

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

 all observables in appendix, tabulated version & correlation matrices in LHCb-PAPER-2021-035

31

31

• Shown: $\langle A_6 \rangle [\langle A_6 \rangle \sim A_{FB}^{CP}]$, $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP} [others in appendix]

arXiv:2111.03327

- arXiv:2111.03327
- Shown: $\langle A_6 \rangle [\langle A_6 \rangle \sim A_{FB}^{CP}]$, $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP} [others in appendix]

Further opportunities & Future prospect

Lepton Universality

• Ratio of BF muon vs electron decay modes [smoking gun in B-physics!]

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

* in equal q² range

hadronic uncertainties cancel, clean null test!

Lepton Universality

• Ratio of BF muon vs electron decay modes [smoking gun in B-physics!]

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

* in equal q² range

hadronic uncertainties cancel, clean null test!

- Also in charm significant deviation from unity possible
 - mainly in non-resonant regions (far future LHCb upgrade II)
 - ~O(15%) q² integrated (near future!)

full q^2	SM	BSM	LQ	hi q^2 SM	LQs	$\log q^2$ SM	BSM
$R^D_{\pi\pi}$	$1.00 \pm \mathcal{O}(\%)$	0.850.99	SM-like	$1.00 \pm O(\%)$	0.74.4		
R^D_{KK}	$1.00\pm \mathcal{O}(\%)$	SM-like	SM-like	NA	NA	$0.83\pm \mathcal{O}(\%)$	0.600.87

G. Hiller, Angular distributions of rare D decays, Implications LHCb, CERN, October 17, 2018

Lepton Universality

• Ratio of BF muon vs electron decay modes [smoking gun in B-physics!]

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

* in equal q² range

hadronic uncertainties cancel, clean null test!

- Also in charm significant deviation from unity possible
 - mainly in non-resonant regions (far future LHCb upgrade II)
 - ~O(15%) q² integrated (near future!)

full q^2	SM	BSM	LQ	hi q^2 SM	LQs	lo q^2 SM	BSM
$R^D_{\pi\pi}$	$1.00 \pm \mathcal{O}(\%)$	0.850.99	SM-like	$1.00 \pm O(\%)$	0.74.4		
R^D_{KK}	$1.00\pm \mathcal{O}(\%)$	SM-like	SM-like	NA	NA	$0.83\pm \mathcal{O}(\%)$	0.600.87

G. Hiller, Angular distributions of rare D decays, Implications LHCb, CERN, October 17, 2018

branching ratio	$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	$D^0 \to K^+ K^- \mu^+ \mu^-$	$D^0 \to \pi^+ \pi^- e^+ e^-$	$D^0 \to K^+ K^- e^+ e^-$		
LHCb 17	$(9.64 \pm 1.20) \times 10^{-7}$	$(1.54 \pm 0.33) \times 10^{-7}$	_	_		
BESIII 18	-	_	$< 0.7 \times 10^{-5}$	$< 1.1 \times 10^{-5}$		
	LHCb and Belle II should be able to do much bet [And observe some of the channels very soon]					

Charm baryon decays

 first measurement of rare decays of charmed baryons at LHCb (3/fb)

> $\mathscr{B}^{NR}(\Lambda_c \to p\mu^+\mu^-) < 7.7 \times 10^{-8} \,(90 \,\% \, CL)$ PRD 97 (2018) 091101

total BF dominated by resonant LD contributions:

•
$$\Lambda_c \rightarrow p \Phi(\rightarrow \mu^+ \mu^-)$$

• $\Lambda_c \rightarrow p \rho / \omega (\rightarrow \mu^+ \mu^-)$

Charm baryon decays

first measurement of rare decays of charmed baryons at LHCb (3/fb)

 $\mathscr{B}^{NR}(\Lambda_c \to p\mu^+\mu^-) < 7.7 \times 10^{-8} \,(90 \,\% \, CL)$ PRD 97 (2018) 091101

 total BF dominated by resonant LD contributions:

•
$$\Lambda_c \rightarrow p \Phi(\rightarrow \mu^+ \mu^-)$$

•
$$\Lambda_c \rightarrow p \rho / \omega (\rightarrow \mu^+ \mu^-)$$

Great opportunities to test SM!

Soon possible at LHCb Precision tests in future!

Radiative charm decays

- Complementary information wrt. to SL decays
 - CP asymmetries in $D^0 \to V\gamma$ ($V = K^*, \phi, \rho$) in SM < 10⁻³, ~ $\mathcal{O}(10\%)$ in BSM
 - Belle: A_{CP} in $D^0 \rightarrow V\gamma$ compatible with zero at 2%-15% PRL 118 (2017) 051801

expect competition from LHCb, impressive prospects at Belle II LHCB-PUB-2018-009 arXiv:1808.10567

Radiative charm decays

- Complementary information wrt. to SL decays
 - CP asymmetries in $D^0 \to V\gamma$ ($V = K^*, \phi, \rho$) in SM < 10⁻³, ~ $\mathcal{O}(10\%)$ in BSM
 - Belle: A_{CP} in $D^0 \rightarrow V\gamma$ compatible with zero at 2%-15% PRL 118 (2017) 051801

expect competition from LHCb, impressive prospects at Belle II LHCB-PUB-2018-009 arXiv:1808.10567

 often: SM dominated (U-spin related) partner exist such that theory computation of SM-prediction is not needed (but measured!)

Radiative charm decays

- Complementary information wrt. to SL decays
 - CP asymmetries in $D^0 \rightarrow V\gamma$ ($V = K^*, \phi, \rho$) in SM < 10⁻³, ~ $\mathcal{O}(10\%)$ in BSM
 - Belle: A_{CP} in $D^0 \rightarrow V\gamma$ compatible with zero at 2%-15% PRL 118 (2017) 051801

expect competition from LHCb, impressive prospects at Belle II LHCB-PUB-2018-009 arXiv:1808.10567

 often: SM dominated (U-spin related) partner exist such that theory computation of SM-prediction is not needed (but measured!)

PRD 99 (2019) 075023

Di-neutrino decay modes

- FCNC $c \rightarrow u \nu \overline{\nu}$ transitions are very clean probes of the SM (no resonances!)
 - large enhancement of BF possible, any signal \rightarrow NP!

arXiv:2007.05001 PRD 103 (2021) 015033

Di-neutrino decay modes

- FCNC $c \rightarrow u \nu \overline{\nu}$ transitions are very clean probes of the SM (no resonances!)
 - large enhancement of BF possible, any signal \rightarrow NP!

arXiv:2007.05001 PRD 103 (2021) 015033

• $c \to u\nu\overline{\nu}$ can be linked via SU(2) to $c \to u\ell^+\ell^-$ and test cLFV and LU

Di-neutrino decay modes

- FCNC $c \rightarrow u \nu \overline{\nu}$ transitions are very clean probes of the SM (no resonances!)
 - large enhancement of BF possible, any signal \rightarrow NP!
 - $c \to u\nu\overline{\nu}$ can be linked via SU(2) to $c \to u\ell^+\ell^-$ and test cLFV and LU

Model-independent interpretation

Use measurement to set limits on effective NP couplings

Model-independent interpretation

Use measurement to set limits on effective NP couplings

$$H_{eff} \sim \sum C_i \cdot \mathcal{O}_i \qquad C_{10,S,P,T,T5} = 0$$

 We need many decays to constrain all couplings!

$$\mathscr{B}(D \to hhe\mu') \sim K_i^{e\mu} - K_i^{'e\mu} \checkmark \mathsf{LFV}$$

Model-independent interpretation

Use measurement to set limits on effective NP couplings

$$H_{eff} \sim \sum C_i \cdot \mathcal{O}_i \qquad C_{10,S,P,T,T5} = 0$$

 We need many decays to constrain all couplings!

$$c - \frac{\mu^{+}}{u} - \frac{\mu^{-}}{u}$$

 $C - \frac{U}{C_{7,9,10,S,P,T,T5}^{(\prime)}}$

RH quark currents

 $\mathscr{B}(D \to hhe\mu') \sim K_i^{e\mu} - K_i^{'e\mu}$

 $\begin{aligned} |C_7^{(\prime)}| &\lesssim 0.3 \,, \quad |C_9^{(\mu)(\prime)}| \lesssim 0.9 \,, \\ |C_{10}^{(\mu)(\prime)}| &\lesssim 0.8 \,, \quad |C_{9,10}^{(e)(\prime)}| \lesssim 4 \,, \\ |K_{9,10}^{(\mu e)(\prime)}| &\lesssim 1.6 \end{aligned}$

comparable to B physics at least 10 years ago! We need more measurements!

What about the future ?

38

... in the (not so) near future?

40
... in the (not so) near future?

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

... in the (not so) near future?

40

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

- BESIII has proven to make significant contributions to the field
- future projects such as FCCee and future charm tau factories already considered in some theory studies of di-neutrino decays arXiv:2010.02225

Summary

- The low SM rates and unique phenomenology make the field a perfect place to look for physics beyond the SM
 - Don't be afraid of LD effects! Clear SM null test allow for stringent NP searches
 - complementary sensitivity with respect to K and B physics, often (re)use of B physics methodology
- Great theoretical and experimental improvements over the last years
 - still rather unexplored and promising
 - bright prospects at (upgrade) LHCb, Belle II, BES III and long-term flavour experiments
 - "Charm is the new beauty... but beauty never goes out of style"

[G. Hiller@ LHCb implication workshop 2020]

More? MPLA 36 (2021) 2130002

Flavour-averaged observables

LHCb-PAPER-2021-035 in preparation

Flavour-averaged observables

LHCb-PAPER-2021-035 in preparation

CP asymmetries $\langle A_i \rangle$

CP asymmetries $\langle A_i \rangle$

Hadron spectra

Hand-waving prospects

Prospects @LHCb

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^{0} ightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$	12%	5%
$D^{0} ightarrow K^{+}K^{-}\mu^{+}\mu^{-}$	4%	1.7%

Asymmetries (CP & angular, phase-space integrated)

. Contu, <u>Towards the</u>	Ultimate Precision	in Flavour Physic	<u>cs</u> , Durham, United	Kingdom, 2 - 4 Apr 2019
-----------------------------	--------------------	-------------------	----------------------------	-------------------------

official numbers! $N(D^+ \to \pi^+ \mu^+ \mu^-) \approx \mathcal{O}(250k-500k)$ @LHCb 50/fb $N(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \approx \mathcal{O}(10k - 20k)$ $N(D^0 \to K^- \pi^+ \mu^+ \mu^-) \approx \mathcal{O}(100k)$ $R^D_{\pi\pi} \approx \mathcal{O}(2-3\%)$ $A(D^+ \rightarrow \pi^+ e^+ e^-) \approx \mathcal{O}(0.5\%)$

Disclaimer: no

- LHCb has proven to control the relevant systematics (acc., eff., inst. asym.) at this level
- expect competition in $D^0 \rightarrow V\gamma$ from LHCb [LHCB-PUB-2018-009]

Prospects @Belle2

		Int. luminosity	A_C	$_P(D^0 \to ho$	$\rho^0\gamma)$	start fro
	Belle result	1 ab^{-1}	+0.056	± 0.152	± 0.006	otartine
		$5 {\rm ~ab^{-1}}$		± 0.07		
(ה	Belle II statistical error	15 ab^{-1}		± 0.04		
707		$50 {\rm ~ab^{-1}}$		± 0.02		
ys (A_C	$P_P(D^0 \to d)$	(γ)	$\mathcal{M}(\mathcal{D}^0) \setminus \mathcal{K}$
Г Г	Belle result	$1 {\rm ~ab^{-1}}$	-0.094	± 0.066	± 0.001	$N(D \rightarrow N)$
c x b		5 ab^{-1}		± 0.03		
0	Belle II statistical error	$15 {\rm ~ab^{-1}}$		± 0.02		
E		$50 { m ab}^{-1}$		± 0.01		• exp
b		a charles	ACP	$(D^0 \to \overline{K})$	(γ)	doc
ž	Belle result	1 ab^{-1}	-0.003	± 0.020	± 0.000	Uer
		$5 {\rm ~ab^{-1}}$		± 0.01		fina
	Belle II statistical error	$15 {\rm ~ab^{-1}}$		± 0.005		10
	and the second second	50 ab^{-1}		± 0.003		10

start from
$$N(D^0 \rightarrow K^- \pi^+ e^+ e^-) \approx 70$$
 (@BaBar, 0.5/ab)

$$\begin{bmatrix} PRL 122 (2019) 081802 \end{bmatrix}$$

$$\epsilon_{BaBar} = \epsilon_{Belle2}$$

 $(\pi ee) \approx \mathcal{O}(7k)$ yields (50/ab) for di-electron modes might be comparable with LHCb (50/fb)

pect contributions to di-neutrino ($c \rightarrow u \nu \bar{\nu}$) cays and decays with neutral hadrons in al state (also from BESIII, FCC-ee)

Taken from Chris Parkes, LHCb: Highlights & Perspectives, LHCP, 7 June 2021

- Pixel detector VELO with silicon microchannel cooling 5mm from LHC beam
- New RICH mechanics, optics and photodetectors
- New silicon strip upstream tracker UT detector
- New SciFi tracker with 11,000 km of scintillating fibres
- New electronics for muon and calorimeter systems

Major project being installed currently for operation in Run 3

LHCb Upgrade II : Framework TDR

Francesca Dordei, Monday 17:54 Silvia Gambetta, Wednesday 14:39

- Fully exploit LHC facility for flavour physics & beyond, for LS4
 - Expression of interest (2017), Physics Case (2018)
 - Strong support in European Strategy (2020)
- Framework Technical Design Report
 - Options to achieve physics programme
 - Drafting in progress, for delivery later this year

LHCb Upgrade II Scenario-I	R_{K} [1,6] R_{K} [1,6] R_{A} [1,6]	$\Delta C_{\rm r} = -1.4$
LHCb Upgrade II Scenario-II		$\Delta \mathcal{C}_9 = -0.7$ $\Delta \mathcal{C}_{10} = +0.7$
LHCb Upgrade II Scenario-III	[$\Delta C'_{9} = +0.3$ $\Delta C'_{10} = +0.3$
LHCb Upgrade II Scenario-IV	-	$\Delta \mathcal{C}'_9 = +0.3 \ \Delta \mathcal{C}'_{10} = -0.3$
LHCb Run 1 0.4 0.6 0.8		1 1.2 $R_{\rm y}$
	Physics Car for an LHCb Upgrt	A se ade II physics, and HC era

Lepton Flavour Violation

BABAR

NP models: PRD 98 (2018) 035041 $\mathcal{B}(D^0 \to \pi^+ \pi^- e^{\pm} \mu^{\mp}) \lesssim 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- e^{\pm} \mu^{\mp}) \lesssim 10^{-9}$

• limits $\mathcal{O}(10^{-7})$ on $D^0 \to h^+ h^- \mu e$ by BarBar

		-		
Decay mode	$N_{ m sig}$	$\epsilon_{ m sig}$	B	B 90% U.L.
$D^0 \rightarrow$	(candidates)	(%)	$(\times 10^{-7})$	$(\times 10^{-7})$
$\pi^{-}\pi^{-}e^{+}e^{+}$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	$12.42 \pm 5.30 \pm 1.45$	-4.38	$15.4 \pm 6.59 \pm 1.85$	30.6
$\pi^-\pi^+e^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	-4.79	$1.55 \pm 6.97 \pm 1.45$	17.1
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	-3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	-3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0
$K^-\pi^+e^{\pm}\mu^{\mp}$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0
$K^{-}K^{-}e^{+}\mu^{+}$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8
$K^-K^+e^\pm\mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0

PRL 124 (2020), 071802

Lepton Flavour Violation

PRL 124 (2020), 071802

26

NP models: PRD 98 (2018) 035041

$$\mathcal{B}(D^0 \to \pi^+ \pi^- e^{\pm} \mu^{\mp}) \lesssim 10^{-7}$$

 $\mathcal{B}(D^0 \to K^+ K^- e^{\pm} \mu^{\mp}) \lesssim 10^{-9}$

limits $\mathcal{O}(10^{-7})$ on $D^0 \rightarrow h^+ h^- \mu e$ by BarBar

Decay mode	$N_{ m sig}$	$\epsilon_{\rm sig}$	B	B 90% U.L.
$D^0 \rightarrow$	(candidates)	(%)	$(\times 10^{-7})$	$(\times 10^{-7})$
$\pi^{-}\pi^{-}e^{+}e^{+}$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6
$\pi^-\pi^+e^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	4.79	$-1.55 \pm 6.97 \pm 1.45$	17.1
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	-3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0
$K^-\pi^+e^{\pm}\mu^{\mp}$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0
$K^-K^-e^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8
$K^-K^+e^{\pm}\mu^{\mp}$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0

• updated limits on $D^0 \rightarrow h^0 \mu e$ very recently

	$N_{\rm sig}$	Csig	$B(\times 10^{-7})$	B 90% U.L	$(\times 10^{-7})$
Decay mode	(candidates)	(%)		BABAR	Previous
$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6 \pm 4.8 \pm 2.3$	8.0	860
$D^0 \to K^0_{\rm S} e^{\pm} \mu^{\mp}$	$0.7\pm1.7\pm0.7$	3.01 ± 0.04	$1.9\pm4.6\pm1.9$	8.6	500
$D^0 \to \overline{K}^{*0} e^{\pm} \mu^{\mp}$	$0.8\pm1.8\pm0.8$	2.31 ± 0.03	$-2.8\pm6.1\pm2.6$	12.4	830
$D^0 \rightarrow \rho^0 e^{\pm} \mu^{\mp}$	$-0.7 \pm 1.7 \pm 0.4$	2.10 ± 0.03	$-1.8 \pm 4.4 \pm 1.0$	5.0	490
$D^0 \to \phi e^{\pm} \mu^{\mp}$	$0.0 \pm 1.4 \pm 0.3$	3.43 ± 0.04	$0.1 \pm 3.8 \pm 0.9$	5.1	340
$D^0 \to \omega e^{\pm} \mu^{\mp}$	$0.4 \pm 2.3 \pm 0.5$	1.46 ± 0.03	$1.8\pm9.5\pm1.9$	17.1	1200
$D^0 \to \eta e^{\pm} \mu^{\mp}$			$6.1\pm9.7\pm2.3$	22.5	1000
with $\eta \to \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96 ± 0.04	$7.0 \pm 10.5 \pm 2.4$	24.0	
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0 \pm 2.8 \pm 0.7$	2.46 ± 0.04	$0.4\pm25.8\pm6.0$	42.8	- No

LHCb and Belle2 should hopefully be able to do better!

What about Electron Modes

PRD 97 (2018) 072015

• limits $\mathcal{O}(10^{-5})$ on $D \to Xe^+e^-$ by BESIII

BESII

Signal decays	\mathcal{B} (×10 ⁻⁵)	PDG [9] (×10 ⁻⁵)
$D^+ ightarrow \pi^+ \pi^0 e^+ e^-$	<1.4	
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	
$D^+ \rightarrow K^0_{\rm S} \pi^+ e^+ e^-$	<2.6	
$D^+ \rightarrow K^{0}_{S}K^+e^+e^-$	<1.1	
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	<31.5
$D^0 \to \pi^+\pi^- e^+ e^-$	< 0.7	<37.3
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 ightarrow \pi^0 e^+ e^-$	< 0.4	< 4.5
$D^0 ightarrow \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	<18
$D^0 \rightarrow K^0_S e^+ e^-$	<1.2	<11

What about Electron Modes

PRD 97 (2018) 072015

• limits $\mathcal{O}(10^{-5})$ on $D \to Xe^+e^-$ by BESIII

BESII

Signal decays	\mathcal{B} (×10 ⁻⁵)	PDG [9] (×10 ⁻⁵)
$D^+ ightarrow \pi^+ \pi^0 e^+ e^-$	<1.4	
$D^+ \rightarrow K^+ \pi^0 e^+ e^-$	<1.5	
$D^+ \rightarrow K^0_{\rm S} \pi^+ e^+ e^-$	<2.6	
$D^+ \rightarrow K^{0}_{S}K^+e^+e^-$	<1.1	
$D^0 \rightarrow K^- K^+ e^+ e^-$	<1.1	<31.5
$D^0 \to \pi^+\pi^- e^+ e^-$	< 0.7	<37.3
$D^0 \rightarrow K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 ightarrow \pi^0 e^+ e^-$	< 0.4	< 4.5
$D^0 ightarrow \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	<18
$D^0 \rightarrow K^0_S e^+ e^-$	<1.2	<11

Search for forbidden and rare leptonic decays

"Search for the lepton-flavour violating decay $D^0 o e\mu$ " PLB 754 (2016) 167 "Search for the rare decay $D^0 o \mu^+ \mu^-$ " PLB 725 (2013) 15-24

LQ

PLB 725 (2013) 15-24

PLB 725 (2013) 15-24

LQ

 10^{-2} HFLAV 90% C.I $D^0 \rightarrow e^{\pm}\mu^{\mp}$ Summer 16 clean null 10^{-3} test! strictly forbidden in the SM LF CLEO (1988) any signal clear indication of NP 10^{-4} SM extensions: BF in [10⁻¹⁴-10⁻⁶] ۲ CLEO II(1996) 🔽 10^{-5} 10^{-6} BaBar 2004 $D^0 \rightarrow \mu^{\pm}\mu^{\mp}$ 10^{-7} SM BF extremely low, dominated by two-photon ulletLHCb Run1 (2013) intermediate state $\sim O(10^{-13})$ PRD 66 (2002) 014009 PRD 82 (2010) 094006 10^{-8} PRD 79 (2009) 114030 PRD 93 (2016) 074001 in NP scenarios $BF_{NP} \leq BF_{EXP}_{PLB 725 (2013) 15-24}$ • 10^{-9}

$$\mathcal{B}(D^0 o e^\pm \mu^\mp) < 1.3 imes 10^{-8} ext{ at } 90\% ext{ CL}$$
 (LHCb 3/fb Run1)

D⁰→ e±µ∓

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

90% C.I

HFLAV

Summer 16

CLEO

(1988)

BaBar 2004

LHCb Run1

 \bigcirc

(2013)

LF

CLEO II(1996) 👿

- strictly forbidden in the SM test!
 - any signal clear indication of NP
 - SM extensions: BF in [10⁻¹⁴-10⁻⁶]

19

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$$

(1 HCb 3/fb Bun1

$D^0 \rightarrow \mu^{\pm} \mu^{\mp}$

• SM BF extremely low, dominated by two-photon

intermediate state ~O(10⁻¹³) PRD 66 (2002) 014009 PRD 82 (2010) 094006 PRD 79 (2009) 114030 PRD 93 (2016) 074001

clean null

• in NP scenarios $BF_{NP} \lesssim BF_{EXP}_{PLB 725 (2013) 15-24}$

```
\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9} \text{ at } 90\% \text{ CL}
(LHCb 1/fb Run1)
```


Electron Modes

34

- Only one observed electron mode $D^0 \rightarrow K^- \pi^+ e^- e^+$ (BaBar)
 - Measurement restricted to m(e+e-) in [675-875] MeV

 $\mathcal{B}(D^0 \to K^- \pi^+ e^- e^+) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$

uncertainties are statistical, systematic

Electron Modes

- Only one observed electron mode $D^0 \rightarrow K^- \pi^+ e^- e^+$ (BaBar)
 - Measurement restricted to m(e+e-) in [675-875] MeV

 $R_{K\pi}^D = 1.03 \pm 0.17$

*private average

"Proof of principles" decay not sensitive to FCNC processes! $\mathscr{B}(D^0 \to K^- \pi^+ \ell^- \ell^+)$ $\sim 4 \times \mathscr{B}(D^0 \to \pi^- \pi^+ \ell^- \ell^+)$ $\sim 25 \times \mathscr{B}(D^0 \to K^- K^+ \ell^- \ell^+)$

 $\mathcal{B}(D^0 \to K^- \pi^+ e^- e^+) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$

• Muonic mode has been measured by LHCb (2/fb) PLB 757 (2016) 558 $\mathscr{B}(D^0 \to K^- \pi^+ \mu^- \mu^+) = (4.12 \pm 0.12 \pm 0.38) \times 10^{-6}$