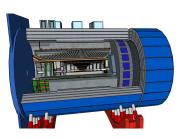
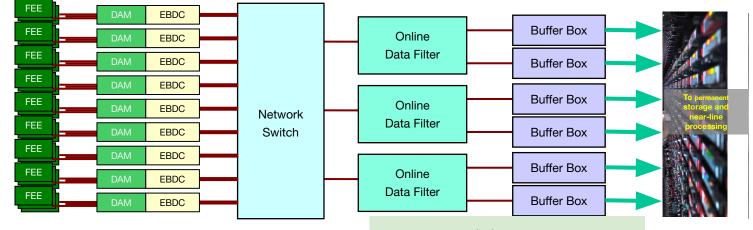


EIC Comprehensive Chromodynamics Experiment

Electronics, DAQ, and Computing

David Lawrence




Dec. 13, 2021

DAQ: Overview

- ECCE proposal calls for a Streaming Data Acquisition System (SRO)
 - Widely recommended by experts: EIC Computing Consortium, EIC Yellow Report
 - No need to wait for all signals from single crossing to read out data
 - Removes nearly all deadtime
 - Less restrictions for filter criteria and potentially less bias

FEE = Front End Electronics

DAM = Data Aggregation Module

EBDC = Event Buffer / Data Compressor

Front End Electronics

- Requirement: Digitize analog signals with appropriate dynamic range
- ★ Solution: Mixture of ASICs and COTS modules that individually address specific needs of each detector
 - Nalu SoC, MAROC PID detectors
 - AC-LGAD development (based on CMS eTROC) TOF (high-res)
 - ATLAS ALTIROC Far forward, Roman pots, etc.
- Requirement: Does not require external triggering
- ★ **Solution**: All FEE modules implement continuous sampling modes
- Requirement: Preserve high resolution capability of calorimeters
- ★ **Solution**: Implement common waveform digitizer design for all calorimetry
- Requirement: Zero suppression + Feature extraction
- ★ **Solution**: All FEE modules implement zero suppression. SAMPA, HDSoC, etc. have integrated DSPs for feature extraction. DAM boards also capable of feature extraction.
- Requirement: Interface with DAM
- ★ **Solution**: All FEE modules optical link compatible with FELIX

See DAQ/Electronics ecce note for more details:

https://www.ecce-eic.org/ecce-internal-notes (PW: ECCEprop)

ASIC = Application Specific Integrated Circuit COTS = Commercial Off The Shelf DAM = Data Aggregation Module

3/10

5,376

1,840,000

524,288

2.6M

1.8M

4.6M

4/10

268,441

MAROC3

eRD112 development

eRD112 development

eRD112 development

eRD112 development

eRD112 development

eRD112 development

PID Detect	or ASICs and	d Channel	Counts ©	
	PID WBS Name	Detector	ASIC	Channels
ASIC development done at community level (not ECCE specific)	Barrel PID	hpDIRC TOF	High Density SoC eRD112 development	69,632 8,600,000
	Electron Endcap	mRICH TOF	High Density SoC eRD112 development	65,536 920,000

Hadron Endcap

Far-Forward Detectors

Far-Backward Detectors

SoC= System on a Chip

eRD112 = project for

12/13/2021

targeted EIC detector R&D

dRICH

TOF

Roman Pots

B0 Detector

Off-Momentum Detectors

Low-Q² Tagger

Luminosity Monitor

ECCE DPAP Panel Review

Detector system	DAM boards Channel/Fiber Cour						
P	arrel						
Si Tracker	4	100 fibers					
uRWell	12	278,000 channels, 576 fiber					
AC-LGAD TOF	30	1400 fibers					
hpDIRC	5	200 fibers					
BECAL	2	9,088 channels , 72 fibers					
iHCAL + oHCAL	1	3,264 channels, 26 fibers					
Fo	rward						
AC-LGAD TOF	6	300 fibers					
dRICH	5	220 fibers					
FEMC	8	47,850 channels, 375 fibers					
LFHCAL	10	58,590 channels, 460 fibers					
Backwards							
mRICH	7	288 fibers					
AC-LGAD TOF 3 150		150 fibers					
EEMC	1	2878 channels, 24 fibers					
Far-Forward							
B0 Detector,							
Roman Pots, Off-Momentum Detectors, ZDC	26	7.4M					
ZUC							
Far-B	ackward						
Luminosity Monitor & Low-Q ² Tagger	18	4.9M					
Sum	138						

DAM Boards CCC

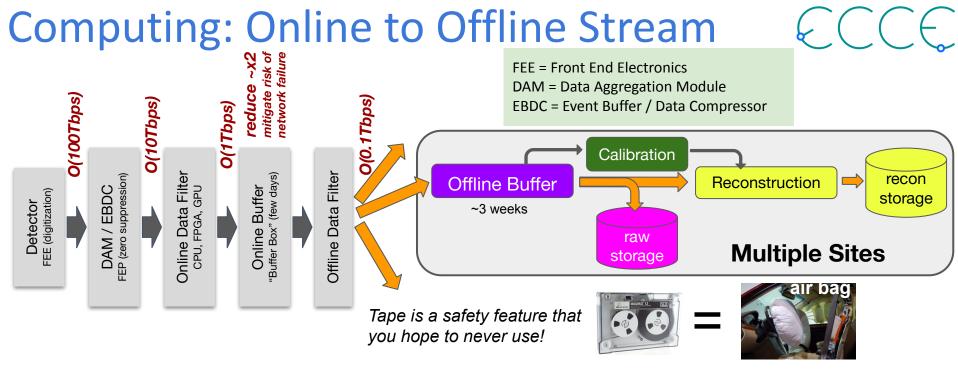
- Transition data to COTS Computing
- Built-in FPGA provides processing/Data aggregation

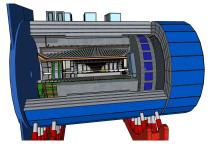
ATLAS FELIX board is an example of a DAM board

COTS = Commercial Off The Shelf DAM = Data Aggregation Module

DAQ: Timing System

ECCE


- Each beam crossing identified with unique 64-bit value
- Communicated to DAM boards which distribute to FEE
 - Data transferred at multiple of accelerator clock (e.g. x6)
 - 16bits per transfer (16x6 = 96bits/crossing)
 - Additional data embedded across transfers
 - "mode" bits can indicate different actions to FEE
 - Crossing number used to stamp all data from front end
 - Specifics of timing will be detector dependent
 - System modeled after working sPHENIX system


FEE = Front End Electronics
DAM = Data Aggregation Module

12/13/2021

DAQ, BUFFERING, FILTERING, CALIBRATION, RECONSTRUCTION, ANALYSIS

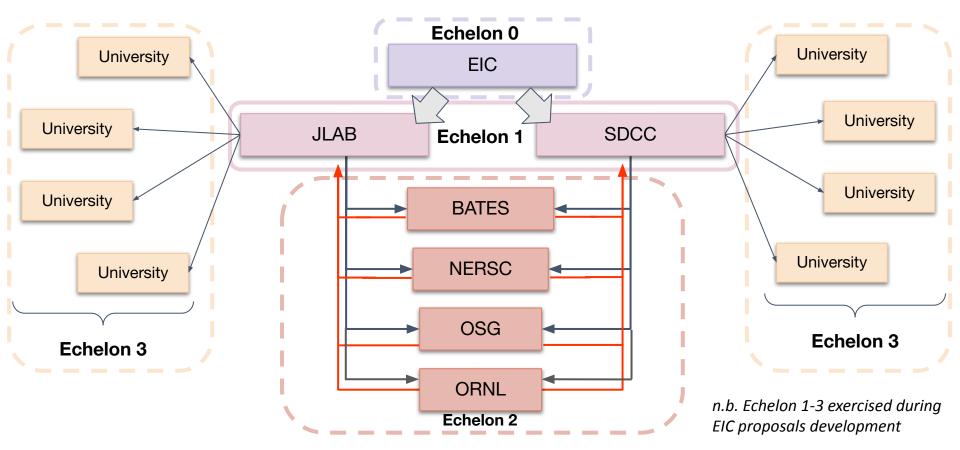
2000

Y(2s)

Y(400)

Y(4260)

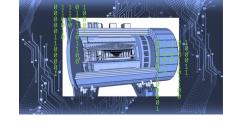
Y(4260)


ECCE Simulation 10 fb⁻¹, e + p 5x100

Invariant Mass (GeV/c2)

12/13/2021 ECCE DPAP Panel Review 7/10

Computing: Butterfly Model



Raw Data Requirements (estimated)

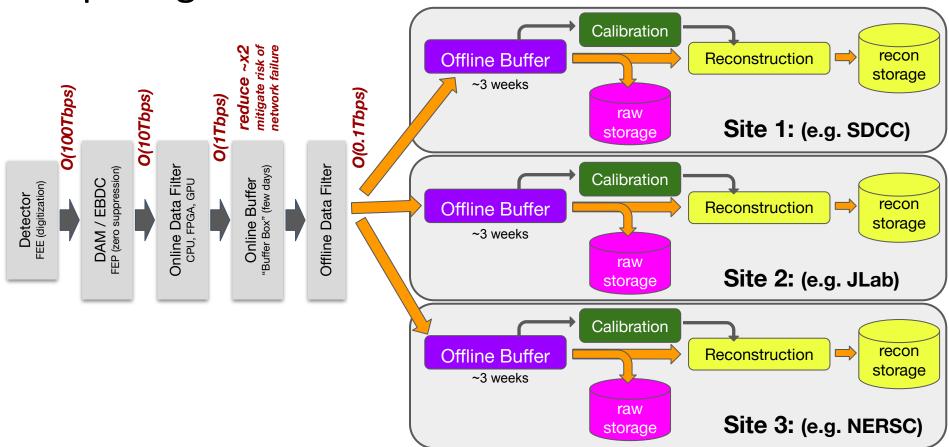
ECCE Runs	year-1	year-2	year-3
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$
Weeks of Running	10	20	30
Operational efficiency	40%	50%	60%
Disk (temporary)	1.2PB	3.0PB	18.1PB
Disk (permanent)	0.4PB	2.4PB	20.6PB
Data Rate to Storage	6.7Gbps	16.7Gbps	100Gbps
Raw Data Storage (no duplicates)	4PB	20PB	181PB
Recon process time/core	5.4s/ev	5.4s/ev	5.4s/ev
Streaming-unpacked event size	33kB	33kB	33kB
Number of events produced	121 billion	605 billion	5,443 billion
Recon Storage	0.4PB	2PB	18PB
CPU-core hours (recon+calib)	191Mcore-hrs	953Mcore-hrs	8,573Mcore-hrs
2020-cores needed to process in 30 weeks	38k	189k	1,701k

Summary

- Fully Streaming DAQ system
 - Experiment-wide, improves performance, reduces risk, cost effective
- Candidate Front End Electronics identified for each detector system
 - Leverage community and commercial solutions as much as possible
- Multiple stages of data aggregation and reduction
 - heterogeneous hardware solutions (FPGA, CPU, GPU, ...)
- Federated Computing Model to decentralize computing
- Latency (e.g. ~3weeks) between acquisition and fully calibrated/aligned/reconstructed data ready for physics analysis

See DAQ/Electronics and Computing Plan documents for more details:

https://www.ecce-eic.org/ecce-internal-notes


(. .

Backups

Computing: Online to Offline Stream

