Hadron track in jets purity study

Xilin Liang Oct. 19, 2021

Track PID purity study from jet

- Goal: check PID purity for tracks in jets with the track longitudinal momentum fraction (z) from the jet.
 - Check PID purity with different (x,Q²).
 - Track longitudinal momentum fraction (z) from jet : $z = \frac{\dot{p}_{track} \cdot \dot{p}_{jet}}{\vec{p}_{jet}^2}$
- Check for 3 PID system:
 - dualRICH_aerogel: $1 < \eta < 3.5$
 - dualRICH_c2f6: $1 < \eta < 3.5$
 - barrelDIRC: $-1 < \eta < 1$

Jet finding algorithm: Anti-kT , R=1.0 , P_T > 3 GeV

- Merge the dualRICH system by the track momentum:
 - dualRICH_aerogel: P < 12 GeV
 - dualRICH_c2f6: P > 12 GeV
- Check for Pion, Kaon and Proton tracks.

Data set

- Use Pythia8 to simulate Deep Inelastic Scattering (DIS) process
- Use Delphes to do the EIC detector respond simulation
 - Delphes card: **ATHENA.tcl**, where PID hypothesis is implemented for calorimeter systems.
- Number of event generated: 1 M
- E_{proton} = 275 GeV
- $E_{electron} = 10 \text{ GeV}$
- Q² > 25 GeV
- Jet finding algorithm:
 - Anti-kT , R=1.0 , $P_T > 3 \text{ GeV}$

Event Q² vs x for all the tracks in the jet

- We plot event Q² vs x in log scale.
 - Note: each track in the jet will give an entry, so there will be multiple counting for each event.
 - Choose 10 area for barrelDIRC system and 11 area for dualRICH system.

number of correctly identified tracks in PID system

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$
 - Z: track longitudinal momentum fraction from the jet
 - Combine dualRICH systems results by hadronic track momentum.

6 bins

dualRICH_aerogel: P < 12 GeV dualRICH c2f6: P > 12 GeV

number of correctly identified tracks in PID system

- dualRICH_c2f6: P > 12 GeV • purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for $\mathbf{z} = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$ the corresponding track in PID system hypothesis.

6 bins

dualRICH_aerogel: P < 12 GeV

• Z: track longitudinal momentum fraction from the jet

dualRICH aerogel: P < 12 GeV

6 bins

number of correctly identified tracks in PID system dualRICH_c2f6: P > 12 GeV

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{p_{track} \cdot \dot{p}_{jet}}{}$
 - Z: track longitudinal momentum fraction from the jet.

Conclusion

- When we combine the dualRICH PID systems to calculate the purity, the Pion and Kaon purity is close to 1 for most of the (x,Q²) ranges.
- The proton purity are high for dualRICH systems at high longitudinal momentum fraction z ranges.
- For barrelDIRC system, the purity are high at low longitudinal momentum fraction z. Lower Q² ranges seems to bring high purity.

Motivation on PID purity with limited phase space

- The restricted momentum coverage (right plot) taken based on pseudorapidity range will limit the phase space and cause the high z range to be inaccessible.
 - The restricted momentum coverage is based on expected performance range.
- Our current step is to investigate how the PID purity change in limited phase space by choosing different (x,Q²).

Repeat the result for ratio for limited momentum coverage distribution

- Electron E: 18GeV
- Proton E : 275 GeV
- Q² > 16 GeV
- Limited momentum:
 - -1.0 < η < 1.0 : P < 5GeV/c
 - 1.0 < η < 2.0 : P < 8GeV/c
 - 2.0 < η < 3.0 : P < 20GeV/c
 - 3.0 < η < 3.5 : P < 35GeV

Impact on physics measurement with restricted momentum coverage

 $A_{\mathrm{UT}}^{\sin(\phi_S - \phi_h)} [\%]$

> = 10 GeV

20 GeV

 $z_h = |\vec{p}_{\rm jet} \cdot \vec{p}_{\rm hadron}| / |\vec{p}_{\rm jet}|^2$

0.6

- Top row plots are Collins asymmetry with hadrons in perfect expected PID.
- Bottom row plots are Collins asymmetry with hadrons in restricted momentum reach PID.
- Our current step is to investigate how the PID purity change in limited phase space by choosing different (x,Q²).

...

0.4

(b)

 $z_h = |\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{hadron}}| / |\vec{p}_{\text{jet}}|^2$

0.6

. ...

> = 24 GeV

0.4

 $z_h = |\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{hadron}}| / |\vec{p}_{\text{jet}}|^2$

M. Arratia, Z. Kang, A. Prokudin, F. Ringer Phys.Rev.D 102 (2020) 7, 074015

stat. K

stat. n

0.6

number of correctly identified tracks in PID system

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$
 - Z: track longitudinal momentum fraction from the jet
 - Plots are for all the hadron tracks.

dualRICH aerogel: P < 12 GeV dualRICH c2f6: P > 12 GeV

number of correctly identified tracks in PID system

dualRICH_aerogel: P < 12 GeV dualRICH c2f6: P > 12 GeV

13

6 bins

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis.
 - Z: track longitudinal momentum fraction from the jet

dualRICH aerogel: P < 12 GeV

6 bins

number of correctly identified tracks in PID system dualRICH_c2f6: P > 12 GeV

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$
 - Z: track longitudinal momentum fraction from the jet.

14

number of correctly identified tracks in PID system

- purity: $\frac{namber of correctly tacks in fea tracks in TD system}{number of all tracks in jet within PID system coverage}$
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $\vec{p}_{track} \cdot \vec{p}_{int}$
 - Z: track longitudinal momentum fraction from the jet
 - Combine dualRICH systems results by hadronic track momentum.

10 bins

dualRICH_aerogel: P < 12 GeV dualRICH_c2f6: P > 12 GeV

0.8

0.7

0.9

number of correctly identified tracks in PID system

dualRICH aerogel: P < 12 GeV dualRICH_c2f6: P > 12 GeV

10 bins

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $\mathbf{z} = \frac{p_{track}}{p_{jet}} \cdot \vec{p}_{jet}$
 - Z: track longitudinal momentum fraction from the jet

dualRICH_aerogel: P < 12 GeV

10 bins

number of correctly identified tracks in PID system dualRICH_c2f6: P > 12 GeV

- purity: $\frac{namber of correctly tacket in field tracks in TD system of all tracks in jet within PID system coverage$
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $\vec{p}_{track} \cdot \vec{p}$
 - Z: track longitudinal momentum fraction from the jet.

17

number of correctly identified tracks in PID system

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{\vec{p}_{track} \cdot \vec{p}_{jet}}{\vec{p}_{jet}^2}$
 - Z: track longitudinal momentum fraction from the jet
 - Combine dualRICH systems results by hadronic track momentum.

dualRICH_aerogel: P < 12 GeV dualRICH c2f6: P > 12 GeV

number of correctly identified tracks in PID system

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{\dot{p}_{track} \cdot \dot{p}_{jet}}{\vec{p}_{jet}^2}$
 - Z: track longitudinal momentum fraction from the jet

20 bins

dualRICH_c2f6: P > 12 GeV

dualRICH_aerogel: P < 12 GeV

ri Oct 15 15:15:43 2021

dualRICH aerogel: P < 12 GeV

20 bins

number of correctly identified tracks in PID system dualRICH_c2f6: P > 12 GeV

- purity: number of all tracks in jet within PID system coverage
 - "Correctly identified track": PID value for track in jet same as the PID value for the corresponding track in PID system hypothesis. $z = \frac{p_{track} \cdot p_{jet}}{p_{track} \cdot p_{jet}}$
 - Z: track longitudinal momentum fraction from the jet.

