## **Detecting Composite Dark Matter with** Bremsstrahlung and the Migdal Effect **BNL High Energy Theory Seminar** Javier Acevedo Dec. 2nd 2021





based on: **JA**, Bramante & Goodman 2108.10889 2012.10998

17jfa1@queensu.ca







## I. Composite Dark Matter

## **II. Direct Detection Signals**

## **III. Astrophysical Signatures**

## I. Composite Dark Matter

## **Dark Matter**

interactions known

Mass range is extremely broad:





## **Dark Matter**

interactions known

Mass range is extremely broad:







## **Dark Matter**

interactions known

Mass range is extremely broad:







### **Asymmetric DM model:**

$$\mathscr{L}_{\rm DM} = \frac{1}{2}\partial^2\phi + \frac{1}{2}m_{\phi}^2\phi^2 + \bar{X}\left(i\gamma^{\mu}\partial_{\mu} - m_X\right)X + g_X\bar{X}\phi X$$

### Can DM bound states form in the early universe?

### If so, what are their properties?



number density radius/mass Fermi energy binding energy







$$\mu = \left(p_F^2 + m_*^2\right)^{1/2} \text{ chemical potential}$$

$$\varepsilon \simeq \frac{1}{2} m_{\phi}^2 \langle \phi \rangle^2 + \frac{1}{\pi} \int_0^{p_F} dp \ p^2 \left(p^2 + m_*^2\right)^{1/2} \text{ energy density}$$

$$p = -\left(\frac{dE}{dV}\right)_N = \frac{\mu - \varepsilon}{V} \text{ pressure}$$

composite equations

# $\langle \phi \rangle$ $N_X \gg 1$ R.M.F.T.

 $m_* \equiv m_X - g_X \langle \phi \rangle$  effective mass

Wise & Zhang, 1407.4121 Gresham et. al., 1707.02313



#### Simple scaling relations are recovered when $m_X \gg m_{\phi}$

$$\frac{m_*}{m_X} \sim \frac{m_\phi}{m_X} \qquad \text{effective mass}$$

$$\frac{p_F}{m_X} \simeq \frac{\mu}{m_X} \sim \left(\frac{m_\phi}{m_X}\right)^{1/2} \qquad \begin{array}{c} \text{Fermi} \\ \text{momentum/} \\ \text{energy} \end{array}$$

Gresham et. al., 1707.02313





Composite properties:  $\langle \phi \rangle \propto m_X$ given  $\bar{m}_X, N_X$  $\mu \equiv \bar{m}_X \sim m_X^{1/2} m_{\phi}^{1/2}$ 







### How good is this mean-field approximation?

Numerical studies indicate transition when  $R_X \gtrsim m_{\phi}^{-1}$ 





#### Gresham et. al., 1707.02313

$$0^{10} \left(\frac{\alpha_X}{0.3}\right)^{-\frac{3}{4}} \left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{m_\phi}{\text{MeV}}\right)^{-2}$$

#### saturation number





Gresham et. al., 1707.02316 Bramante & Unwin, 1701.05859 **JA**, Bramante & Goodman, 2012.10998





Gresham et. al., 1707.02316 Bramante & Unwin, 1701.05859 **JA**, Bramante & Goodman, 2012.10998







Gresham et. al., 1707.02316 Bramante & Unwin, 1701.05859 **JA**, Bramante & Goodman, 2012.10998







#### When assembly is complete:

 $10^{10} \text{ GeV} \lesssim M_X \lesssim 10^{45} \text{ GeV}$ 

100 fm  $\leq R_X \leq 10 \ \mu m$ 

Gresham et. al., 1707.02316 Bramante & Unwin, 1701.05859 **JA**, Bramante & Goodman, 2012.10998

+ subsequent dilution by a factor  $\zeta$ 









### Add attractive Yukawa interaction: $\mathscr{L} = \mathscr{L}_{DM} + g_n \bar{n} \phi n$



**JA**, Bramante & Goodman, 2012.10998

 $p_1^2 + m_N^2 = p_2^2 + (m_N - Ag_n \langle \phi \rangle)^2$  $\frac{p_2^2 - p_1^2}{2} \simeq A g_n \langle \phi \rangle \propto g_n m_X$  $2m_N$ **NR** limit





## **Nucleus-DM Scattering**

How much energy nuclei lose as they scatter against DM constituents?

Some considerations:

- Coupling is very constrained:  $g_n \lesssim 10^{-10}$ •
- Nuclei at most transfer:  $\Delta E \sim \frac{1}{2} m_N v_N^2 \longrightarrow \frac{\Delta E}{p_F} \ll 10^{-4}$

Proper calculation yields:  $\Gamma_{NX \to NX^*} \sim g_n^5 \sim \mathcal{O}(10^{-50})$ •

**JA**, Bramante & Goodman, 2108.10889 Joglekar et. al., 2004.09539

# (not much!)





## **II. Direct Detection Signatures**

## Migdal Effect at Xenon-1T



sudden nuclear recoil

e.g.  $\alpha, \beta^{\pm}$  decay

DM scattering?

 $|\psi_0\rangle$  $\langle\psi_k|\psi_0\rangle = 0$ 

#### How sudden?



 $\Delta t_{\rm recoil} \ll 10^{-17} \, {
m s}$  Migdal approximation (e.g. Xe, Ar)



### **Ionization prob:**

| $(n,\ell)$ | $\mathcal{P}_{\rightarrow 4f}$ | $\mathcal{P}_{\rightarrow 5d}$ | $\mathcal{P}_{ ightarrow 6s}$ | $\mathcal{P}_{ ightarrow 6p}$ | $E_{n\ell} [eV]$                 | $\frac{1}{2\pi} \int dE_e \frac{dp^c}{dE_e}$ |
|------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|----------------------------------|----------------------------------------------|
| 1s         | _                              |                                |                               | $7.3 \times 10^{-10}$         | $\left 3.5 \times 10^4\right $   | $4.9 \times 10^{-6}$                         |
| 2s         | _                              | _                              |                               | $1.8 \times 10^{-8}$          | $5.4 \times 10^3$                | $3.0 \times 10^{-5}$                         |
| 2p         | _                              | $3.0 \times 10^{-8}$           | $6.5 	imes 10^{-9}$           | _                             | $\left 4.9 \times 10^3\right $   | $1.3 \times 10^{-4}$                         |
| 3s         | _                              |                                |                               | $2.7 \times 10^{-7}$          | $1.1 \times 10^3$                | $1.1 \times 10^{-4}$                         |
| 3p         | _                              | $3.4 \times 10^{-7}$           | $4.0 \times 10^{-7}$          | _                             | $9.3 \times 10^{2}$              | $6.0 \times 10^{-4}$                         |
| 3d         | $2.3 \times 10^{-9}$           | _                              | _                             | $4.3 \times 10^{-7}$          | $\left  6.6 \times 10^2 \right $ | $3.6 \times 10^{-3}$                         |
| 4s         | _                              |                                |                               | $3.1 \times 10^{-6}$          | $\left 2.0 \times 10^2\right $   | $3.6 \times 10^{-4}$                         |
| 4p         | _                              | $4.1 \times 10^{-8}$           | $3.0 	imes 10^{-5}$           | _                             | $ 1.4 \times 10^2 $              | $1.5 \times 10^{-3}$                         |
| 4d         | $7.0 \times 10^{-7}$           | _                              | _                             | $1.5 \times 10^{-4}$          | $6.1 \times 10$                  | $3.6 \times 10^{-2}$                         |
| 5s         | _                              |                                |                               | $1.2 \times 10^{-4}$          | $\boxed{2.1\times10}$            | $4.7 \times 10^{-4}$                         |
| 5p         | _                              | $3.6 \times 10^{-2}$           | $2.1 \times 10^{-2}$          | —                             | 9.8                              | $7.8 \times 10^{-2}$                         |

#### lbe et. al., 1707.07258

#### Xe $(q_e = m_e \times 10^{-3})$

| $(n,\ell)$      | 4f   | 5d  | 6s  | 6p  |
|-----------------|------|-----|-----|-----|
| $E_{n\ell}[eV]$ | 0.85 | 1.6 | 3.3 | 2.2 |









#### lbe et. al., 1707.07258

Xe  $(q_e = m_e \times 10^{-3})$ 

| $\mathcal{P}_{\rightarrow 4f}$ | $\mathcal{P}_{\rightarrow 5d}$ | $\mathcal{P}_{ ightarrow 6s}$ | $\mathcal{P}_{ ightarrow 6p}$ | $E_{n\ell} [eV]$    | $\left\  \frac{1}{2\pi} \int dE_e \frac{dp^c}{dE_e} \right\ $ |
|--------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------|---------------------------------------------------------------|
|                                |                                |                               | $7.3 	imes 10^{-10}$          | $3.5	imes10^4$      | $   4.9 \times 10^{-6}$                                       |
|                                |                                |                               | $1.8 \times 10^{-8}$          | $5.4 \times 10^{3}$ | $3.0 \times 10^{-5}$                                          |
| —                              | $3.0 \times 10^{-8}$           | $6.5 	imes 10^{-9}$           | _                             | $4.9 	imes 10^3$    | $\  1.3 \times 10^{-4}$                                       |
| _                              |                                | _                             | $2.7 \times 10^{-7}$          | $1.1 \times 10^{3}$ | $1.1 \times 10^{-4}$                                          |
| _                              | $3.4 \times 10^{-7}$           | $4.0 \times 10^{-7}$          | _                             | $9.3 	imes 10^{2}$  | $\  6.0 \times 10^{-4}$                                       |
| $	imes 10^{-9}$                | _                              |                               | $4.3 \times 10^{-7}$          | $6.6 	imes 10^{2}$  | $3.6 \times 10^{-3}$                                          |
| _                              |                                |                               | $3.1 \times 10^{-6}$          | $2.0 	imes 10^{2}$  | $3.6 \times 10^{-4}$                                          |
| _                              | $4.1 \times 10^{-8}$           | $3.0 \times 10^{-5}$          | _                             | $1.4 \times 10^{2}$ | $   1.5 \times 10^{-3}$                                       |
| $	imes 10^{-7}$                | _                              |                               | $1.5 	imes 10^{-4}$           | 6.1 	imes 10        | $3.6 \times 10^{-2}$                                          |
|                                |                                |                               | $1.2 \times 10^{-4}$          | $2.1 \times 10$     | $4.7 \times 10^{-4}$                                          |
| _                              | $3.6 	imes 10^{-2}$            | $2.1 	imes 10^{-2}$           | —                             | 9.8                 | $   7.8 \times 10^{-2}$                                       |
|                                |                                |                               |                               |                     |                                                               |

| $(n,\ell)$      | 4f   | 5d  | 6s  | 6p  |
|-----------------|------|-----|-----|-----|
| $E_{n\ell}[eV]$ | 0.85 | 1.6 | 3.3 | 2.2 |







Expected number of events:

$$\frac{dR}{dE_R} = \frac{\rho_X}{m_N M_X} \int_{v > v_X^{(min)}} \frac{d\sigma}{dE_R} v f(v) dv$$
 ionization

#### Integrate over recoil/electronic energies:

$$R_{ion} = \left(\frac{4\pi R_X^2 n_X}{m_N}\right) \times \left(\int_{v > v^{(\min)}} dv \ v \ g(v) = E_{em} = E_{nl} + E_e \sim \mathcal{O}\left(\text{keV}\right) \text{ total e.m. e}$$

**JA**, Bramante & Goodman, 2108.10889

tion prob. 
$$\frac{dR_{ion}}{dE_R dE_e} = \frac{dR}{dE_R} \times \left(\frac{1}{2\pi} \sum_{n,l} \frac{dp_q}{dE_e}(n, l-l)\right)$$

g(v)  $\times \left(\frac{1}{2\pi}\sum_{n,l}\int dE_e \ \varepsilon(E_{em})\frac{dp_q}{dE_e}(n,l \to E_e)\right)$  event rate

nergy



#### Xenon-1t's 1<sup>st</sup> DM search exposure:

$$N_{ion} \simeq (98 \text{ kg yr}) R_{ion} \simeq 10 \left(\frac{m_X}{\text{TeV}}\right)^{-\frac{2}{5}} \left(\frac{m_\phi}{\text{MeV}}\right)^{-\frac{4}{5}} \left(\frac{g_n}{10^{-17}}\right) \left(\frac{\alpha_X}{0.3}\right)^{-\frac{1}{10}}$$

### Can also compute # ionization events during single transit:

$$N_{transit} \simeq (2\pi R_X^2 n_N L_{det}) \times \left(\frac{1}{2\pi} \sum_{n,l} \int dE_e \ \varepsilon(E_{em}) \frac{dp_q}{dE_e} (n, l \to E_e)\right)$$

$$N_{transit} \simeq 10^7 \left(\frac{R_X}{\text{nm}}\right)^2 \left(\frac{m_X}{\text{TeV}}\right) \left(\frac{g_n}{10^{-17}}\right) \left(\frac{\alpha_X}{0.3}\right)^{-\frac{1}{2}}$$

**JA**, Bramante & Goodman, 2108.10889



### Constraints obtained at $\alpha_X = 0.3$



#### **JA**, Bramante & Goodman, 2108.10889



Total composite mass  $M_X$  [GeV]





|   | 1     | r        | 1 | E | 5 |   |   |
|---|-------|----------|---|---|---|---|---|
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   | ***** |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
|   |       |          |   |   |   |   |   |
| [ | e     | <b>)</b> | 5 | 7 |   |   |   |
|   |       |          | - | 1 |   | ( | ) |



### Landscape of experimental bounds:



#### Bhoonah et. al., 2012.13406 **JA**, Bramante & Goodman, 2105.06473 Adhikari et. al., DEAP collaboration, 2108.09405

## Large Composite Detection

In most of parameter space, composites have masses  $M_X \gtrsim M_P$ 

DD experiments require ~1 event per year:

 $\rho_X \simeq 0.3 \text{ GeV cm}^{-3}$  $\frac{\rho_X v_X A_{\text{det}} t_{\text{exp}}}{M_X^{max}} \sim 1$   $v_X \simeq 220 \text{ km s}^{-1}$  $A_{\rm det} \simeq 10^3 \ {\rm cm}^2$  $t_{\rm exp} \sim 10 \ {\rm yrs}$ 

Need 
$$A_{det} \gg 10^3 \text{ cm}^2$$

#### Bramante et. al., 1812.09325 **JA**, Bramante & Goodman, 2012.10998





### Where in parameter space may these experiments have sensitivity?

- Maximum composite mass:
  - SNO+:  $M_X^{max} \simeq 10^{22} \text{ GeV}$
- **IceCube:**  $M_X^{max} \simeq 3 \times 10^{25} \text{ GeV}$

• Triggering detectors: SNO+: ~1 MeV per 100 ns  $\longrightarrow \dot{E} \simeq 10^4 \text{ GeV s}^{-1}$ IceCube: ~10 TeV per 100 ns  $\longrightarrow \dot{E} \simeq 10^{11} \text{ GeV s}^{-1}$ 

## E Y















## 1) Thermal bremsstrahlung

Low-Z atoms are fully ionized at  $T \gtrsim 100 \text{ eV}$ 

photons stream out  $\gamma$  mean free path:  $(n_{\rho}\sigma_T)^{-1} \simeq 5 \text{ cm} \gg R_X$ w/out scattering



**JA**, Bramante & Goodman, 2012.10998

 $\dot{E}_{brem} \sim \left(\frac{e^6 n_e^2}{m_e^2}\right) \int e^{-\frac{\hbar\omega}{T}} d\omega dV \simeq 3$  $\simeq 10^{10} \text{ GeV s}^{-1} \left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{R_X}{\text{nm}}\right)^3 \left(\frac{g_n}{10^{-10}}\right)^{\frac{1}{2}}$ 

integrated bremsstrahlung rate









## 2) Thermonuclear fusion



#### At least ~1 reaction per composite crossing:

**JA**, Bramante & Goodman, 2012.10998

## ${}^{12}C + {}^{12}C \rightarrow {}^{24}Mg^*$ $\bar{Q}_{CC} \simeq 3.16 \text{ MeV}$ ${}^{16}O + {}^{16}O \rightarrow {}^{32}S^*$ $\bar{Q}_{OO} \simeq 13.09 \text{ MeV}$ SNO+ IceCube

 $\frac{\dot{R}_{th}(T)R_X^3L_{det}}{\sim} \sim 1$  $\mathcal{V}_X$ 



### Parameter space for detection:



#### **JA**, Bramante & Goodman, 2012.10998

increasing temperature





### Parameter space for detection:



#### **JA**, Bramante & Goodman, 2012.10998





### Parameter space for detection:



#### **JA**, Bramante & Goodman, 2012.10998





#### In summary:

"Light", very-weakly coupled

#### Large DD experiments

Migdal effect probes  $g_n \sim 10^{-17}$  $10^{11} \text{ GeV} \lesssim M_X \lesssim 10^{17} \text{ GeV}$ 



Bremsstrahlung, fusion probes  $g_n \sim 10^{-14}$  $10^{20} \text{ GeV} \lesssim M_X \lesssim 10^{25} \text{ GeV}$ 



## **III. Astrophysical Signatures**

## **Astrophysical Capture**

Composites are efficiently stopped via dissipation processes:

Heat conduction

e.g. with thermal bremsstrahlung:

$$L_{stop} \simeq 10^{-2} \text{ km} \left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{m_{\phi}}{\text{keV}}\right)^2 \left(\frac{g_n}{10^{-10}}\right)^{-\frac{1}{2}} \text{ at } \rho \sim 1 \text{ g cm}^{-3}$$

What are the signatures of composites accumulating in stellar objects?

Ionization

Thermal radiation

 $T \propto g_n m_X$ 





### One possibility: Earth heating!



#### captured DM



#### JA, Bramante, Goodman, Kopp & Opferkuch, 2012.09176 Bramante et. al., 1909.11683 Mack et. al., 0705.4298



 $\dot{Q}_{\oplus} \sim 44 \text{ TW}$ 

rule out parameter space where:

 $\dot{Q}_{DM}(\sigma_{NX},\dots)\gtrsim\dot{Q}_{\oplus}$ 





### Different heating processes:





 $\Delta E \sim n_N R_X^3 \langle \phi \rangle \sim \text{MeV} \ \bar{m}_X^{-4}$ 

 $\dot{Q}_{comp} \gtrsim \dot{Q}_{\oplus}$  for  $\bar{m}_X \lesssim \text{GeV}$ 



## **Type-la Supernovae**

- Thermonuclear explosions of white dwarfs
- Standard candles •
- Exact trigger channel/s still debated:



single WD

single degenerate





double degenerate



### Ignition requires localized heat deposition at WD core:



nuclear flame expands

Timmes & Woosley, ApJ 396 (1992) Niemeyer & Woosley, ApJ 475 (1997) Woosley et. al., 1305.2433



#### Composites may cause single WDs to explode upon transit:

 $M_* \sim 1.3 M_{\odot}$  $R_* \sim 3000 \text{ km}$ C/O WD  $v_{esc} \sim 10^{-2}$  $\rho_* \sim 10^9 \text{ g cm}^{-3}$  $T_* \sim 10^6 {\rm K}$ 

Ignition requires:

#### **JA**, Bramante & Goodman, 2012.10998



centre



#### heating rate > heat dissipation (|) $T_{\rm crit} \sim 10^{10} \ {\rm K} \sim {\rm MeV}$ (||)



### WD dissipation processes:



Dicus, PRD 6 941 (1972) Schinder et. al., ApJ 313:531-542 (1986) Potekhin et. al., astro-ph/9903127

1) Electron conduction

$$\dot{Q}_{\text{cond}} \simeq 10^{27} \text{ GeV s}^{-1} \left(\frac{\rho_*}{10^9 \text{ g cm}^{-3}}\right)^{\frac{4}{15}} \left(\frac{10^9 \text{ g cm}^{-3}}{10^9 \text{ g cm}^{-3}}\right)^{\frac{4}{15}}$$

#### 2) Photon emission

$$\dot{Q}_{\rm rad} \simeq 10^{24} \text{ GeV s}^{-1} \left(\frac{m_{\phi}}{\text{keV}}\right) \left(\frac{R_X}{\mu \text{m}}\right)^2$$

3) Neutrino emission  
$$\dot{Q}_{\nu\bar{\nu}} \simeq 10^{18} \text{ GeV s}^{-1} \left(\frac{R_X}{\mu \text{m}}\right)^3$$





How heavy must composites be to reach the core?

$$v_{esc} = \sqrt{\frac{2GM_*}{R_*}} \sim 0.05 \longrightarrow E_i \simeq 10^{27} \text{ GeV} \left(\frac{M_X}{10^{30} \text{ GeV}}\right)$$

$$\sim 1 \text{ s crossing time}$$

$$C/O \text{ WD} \qquad \qquad \frac{E_i}{\max(\dot{Q}_{\text{cond}}, \dot{Q}_{\text{rad}}, \dot{Q}_{\nu\bar{\nu}})} \gtrsim 1 \text{ s} \longrightarrow$$

### How large must composites be to ignite the core?

nuclear energy rate > heat dissipation

**JA**, Bramante & Goodman, 2108.10889





#### Need to account for relevant reactions:

3 main reactions

$$\frac{12}{12}C + {}^{12}C \rightarrow {}^{24}Mg^* \qquad \bar{Q}_{CC} \simeq 3.16 \text{ MeV} \qquad \dot{R}_{CC} \simeq 10^{43} \text{ cm}^{-3} \text{ s}^{-1}$$

$$\frac{12}{12}C + {}^{16}O \rightarrow {}^{28}Si^* \qquad \bar{Q}_{CO} \simeq 6.51 \text{ MeV} \qquad \dot{R}_{CO} \simeq 10^{42} \text{ cm}^{-3} \text{ s}^{-1}$$

$$\frac{16}{16}O + {}^{16}O \rightarrow {}^{32}S^* \qquad \bar{Q}_{OO} \simeq 13.09 \text{ MeV} \qquad \dot{R}_{OO} \simeq 10^{40} \text{ cm}^{-3} \text{ s}^{-1}$$

$$\dot{Q}_{\rm fus} \simeq 10^{32} \,\,{\rm GeV}\,\,{\rm s}^{-1} \left(\frac{R_X}{\mu{\rm m}}\right)^3$$



**JA**, Bramante & Goodman, 2108.10889

50/50 C/O mix

require  $R_X \gtrsim 10^{-2} \ \mu m$  to ignite core



Set bounds based on WD survival:



#### **JA**, Bramante & Goodman, 2108.10889 2012.10998













## **Concluding Remarks**

detected through energetic signatures at various experiments.

 Various fermionic and bosonic composite dark matter models may present similar phenomenology.

• Composite dark matter with weak couplings to the SM could be

 Astrophysical implications include substantial capture and heating of stellar objects, even leading to the ignition of Type-la supernovae.

- Javier Acevedo
- <u>17jfa1@queensu.ca</u>

**Detecting Composite Dark Matter with Bremsstrahlung and the Migdal Effect** 

Thank you for your attention!

## **Backup slide: Composite Equations I**

Scalar only:

i) 
$$\frac{\partial \varepsilon}{\partial \langle \phi \rangle} = 0$$
  $\longrightarrow$   
ii)  $p = 0$   $\longrightarrow$   
iii)  $C_{\phi}^2 = \frac{4\alpha_{\phi}}{3\pi} \frac{m_X^2}{m_{\phi}^2}$ 

$$3C_{\phi}^{2}\left(\frac{m_{*}}{m_{X}}\right)\int_{0}^{\frac{p_{F}}{m_{X}}}\frac{x^{2}dx}{\sqrt{x^{2}+\left(m_{*}/m_{X}\right)^{2}}}=1-\frac{m_{*}}{m_{X}}$$
$$\int_{0}^{\frac{p_{F}}{m_{X}}}\frac{x^{4}dx}{\sqrt{x^{4}+\left(m_{*}/m_{X}\right)^{2}}}=\frac{1}{2C_{\phi}^{2}}\left(1-\frac{m_{*}}{m_{X}}\right)^{2}$$



## **Backup slide: Composite Equations II**

Add vector field:

$$i) \qquad \frac{\partial \varepsilon}{\partial \langle \phi \rangle} = 0 \qquad \longrightarrow \qquad 3C_{\phi}^{2} \left(\frac{m_{*}}{m_{X}}\right) \int_{0}^{\frac{p_{F}}{m_{X}}} \frac{x^{2} dx}{\sqrt{x^{2} + (m_{*}/m_{X})^{2}}} = 1 - \frac{m_{*}}{m_{X}}$$

$$ii) \qquad p = 0 \qquad \longrightarrow \qquad \int_{0}^{\frac{p_{F}}{m_{X}}} \frac{x^{4} dx}{\sqrt{x^{4} + (m_{*}/m_{X})^{2}}} = \frac{1}{2C_{\phi}^{2}} \left(1 - \frac{m_{*}}{m_{X}}\right)^{2} - \frac{C_{V}^{2}}{2} \left(\frac{p_{F}}{m_{Y}}\right)^{2}$$

$$iii) \qquad C_{\phi}^{2} = \frac{4\alpha_{\phi}}{3\pi} \frac{m_{X}^{2}}{m_{\phi}^{2}} \qquad C_{V}^{2} = \frac{4\alpha_{V}}{3\pi} \frac{m_{X}^{2}}{m_{V}^{2}}$$





## **Backup slide: Composite Equations III**

Add  $V(\phi) \sim \lambda \phi^4$  potential:



$$\frac{n_*}{n_X} \int_0^{\frac{p_F}{m_X}} \frac{x^2 dx}{\sqrt{x^2 + (m_*/m_X)^2}} = 1 - \frac{m_*}{m_X} + C_{\phi}^2 \lambda \left(1 - \frac{m_*}{m_X}\right)^2$$
$$\frac{x^4 dx}{\overline{x^4 + (m_*/m_X)^2}} = \frac{1}{2C_{\phi}^2} \left(1 - \frac{m_*}{m_X}\right)^2 + \frac{\lambda}{4} \left(1 - \frac{m_*}{m_X}\right)$$





## **Backup slide: Stellar Cooling Bounds on gn**



 $m_{\phi}$ 



Hardy et. al., 1611.05852 Knapen et. al., 1709.07882





## **Backup slide: DM-Nucleus Scattering I**

### Composite frame:



$$\Gamma_{NX} = n_X \int_0^{p_F} \frac{dp \ p^2}{V_F} \int d\varphi \ d(\cos \theta) \int d\alpha \ d(\cos \psi) \left(\frac{d\sigma}{d\Omega}\right)_{(CM)}^{\text{Moller velocity}} \underbrace{\nabla \Theta(\Delta E + p - p_F)}_{\text{Pauli-blocking}}$$

(composite rest frame)



(centre-of-momentum frame)





## **Backup slide: DM-Nucleus Scattering II**



$$k_{cm}^{2} \simeq \frac{m_{N}p^{2}}{m_{N}+2p} - \frac{2m_{N}p^{2}(m_{N}+p)v_{N}\cos\theta}{(m_{N}+2p)^{2}} \quad \text{CM moments}$$

$$\beta \simeq \frac{p}{m_{N}+p} + \frac{m_{N}v_{N}\cos\theta}{m_{N}+p} \quad \text{Boost parameter}$$

$$\psi_{max} \simeq \frac{\left(m_{N}(m_{N}+2p)\right)^{1/2}v_{N}\cos\alpha}{p} \quad \text{Max scattering and}$$

 $\Gamma_{NX} \sim \frac{A^2 g_n^2 g_X^2 m_N^4 (m_N + 2p_F) v_N^6}{p_F^4}$ 

scattering rate

 $\hat{p}_z$ 











## Backup slide: Coherent Composite-Nucleus Scattering

$$\left(\frac{d\sigma}{dq}\right)_{XN\to XN} = A^2 N_X^2 f^2(\Lambda) \bar{\sigma}_0 \left(\frac{q}{2m_N^2}\right)$$

$$F_X(qR_X) = \frac{3j_1(qR_X)}{qR_X} \quad \begin{array}{l} \text{composite} \\ \text{substructure} \end{array}$$

$$F_a(qr_N) = \frac{3j_1(qr_N)}{qr_N} e^{-q^2 r_N^2} \quad \begin{array}{l} \text{nuclear} \\ \text{substructure} \end{array}$$

## $\left(\frac{q}{2}v_X^2\right) |F_X(qR_X)|^2 |F_a(qr_N)|^2$ diff. cross section









## **Backup slide: Collective Excitations - Surface Modes**

$$\left(\frac{d\sigma}{dq}\right)_{0\to 1_l} \simeq A^2 N_X^2 f^2(\Lambda) \bar{\sigma}_0 \left(\frac{q}{2m_N^2 v_X^2}\right) |F_{\rm surf}^{(l)}(qR_X)|^2 \quad \text{diff. cross set}$$

$$F_{\rm surf}^{(l)}(qR_X) = \epsilon_l \ (2l+1)^{1/2} j_l(qR_X)$$
 surf

$$\epsilon_l \propto m_X^{-1/4} \bar{m}_X^{-3/2} R_X^{-7/4} \simeq 10^{-14} \left(\frac{m_X}{\text{TeV}}\right)^{-\frac{1}{4}} \left(\frac{\bar{m}_X}{5 \text{ GeV}}\right)^{-\frac{3}{2}} \left(\frac{R_X}{\text{nm}}\right)^{-\frac{7}{4}}$$

 $\bar{\sigma}_0 = \frac{g_n^2 g_X^2 m_N^2}{4\pi \tilde{m}_{\phi}^4} \quad \text{reference cross section}$ 

$$f(\Lambda) = \min\left[1, \left(\frac{\Lambda}{R_X}\right)^3\right]$$

scatterer wavefunction overlap

face mode form factor

mode amplitude





## **Backup slide: DD at Neutrino Obs.**





#### increasing radius/mass



temperature

increasing

## **Backup slide: DM Velocity Distribution**

$$f_*(\mathbf{v}) = \frac{(v^2 - v_e^2)^{3/2}}{N_*} \exp\left(-\frac{\tilde{v}^2}{v_0^2}\right) \Theta(v + \tilde{v}^2) = v^2 - v_e^2 + v_{rf}^2 + 2v_{rf}\sqrt{v^2 - v_e^2}$$
$$\left[ \begin{array}{c} v_{\rm rf} = |\mathbf{v}_{\rm rf}| = 230\,{\rm km/s} \\ v_e \approx 11.2\,{\rm km/s} \\ v_{eg} = 528\,{\rm km/s} \end{array} \right]$$

JA, Bramante, Goodman, Kopp & Opferkuch, 2012.09176

 $(-v_e)\Theta(v_{eg}-\tilde{v})$ 





## **Backup slide: WD Dissipation Processes I**

1) Electron conduction

$$\dot{Q}_{\text{cond}} = \frac{4\pi^2 R_X T_c^3 (T_c - T_*)}{15\kappa_c \rho_*} \simeq 10^{27} \text{ GeV s}^{-1} \left(\frac{\rho_*}{10^9 \text{ g cm}^{-3}}\right)^{\frac{4}{15}} \left(\frac{R_X}{\mu \text{m}}\right)$$

### 2) Photon emission

High stellar opacity blackbody spectrum

$$\dot{Q}_{\rm rad} = \frac{4\pi R_X^2 \sigma_{\rm SB} \,\nabla T^4}{\kappa_r \rho_*} \simeq 10^{24} \,\,{\rm GeV} \,\,{\rm s}^{-1} \left(\frac{m_\phi}{\rm keV}\right) \left(\frac{R_X}{\mu \rm m}\right)^2$$









## **Backup slide: WD Dissipation Processes II**



#### Sum over all neutrino processes:

$$\dot{Q}_{\nu\bar{\nu}} \simeq 10^{18} \text{ GeV s}^{-1} \left(\frac{R_X}{\mu\text{m}}\right)^3$$

## **Backup slide: Composite Stopping**





## **Backup slide: WD Sample**

Age [Gyr]



#### **JA**, Bramante & Goodman, 2108.10889



 $(\rho_X \sim 0.3 \text{ GeV cm}^{-3})$ 





## **Backup slide: Extended Composite Model**

 $\mathscr{L}_{\rm DM} = \frac{1}{2}\partial^2\phi + \frac{1}{2}m_\phi^2\phi^2 + \frac{1}{2}m_V V^2 - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \bar{X}\left(i\gamma^\mu\partial_\mu - g_V V^\mu\partial_\mu - m_X\right)X + g_\phi\bar{X}\phi X$ 

#### Repeat mean-field approach:

$$\langle \phi \rangle \neq \langle V^0 \rangle =$$

#### Gresham et. al., 1707.02313

**∠** 0  $\neq 0$ 

 $\langle V^0 \rangle \sim \left(\frac{m_{\phi}}{m_V}\right)^3 \frac{m_X^3}{m_V^2}$ 





