Use of kinematical Lorentz invariants

Wim Cosyn

FIU
Crossing angle meeting
Oct 26, 2021

Intro

- Based on several sources:

1 Bacchetta, D'Alesio, Diehl, Miller, "SSAs: Trento conventions" https://arxiv.org/abs/hep-ph/0410050v2

2 Bacchetta et al., "SIDIS at small p_{T} https://iopscience.iop.org/ article/10.1088/1126-6708/2007/02/093

3 Cosyn, Weiss, "Neutron spin structure from polarized deuteron DIS with proton tagging", https://journals.aps.org/prc/abstract/10. 1103/PhysRevC.102.065204

- Aim is pedagogical, so sometimes the obvious could be stated

Lorentz Invariants

- Quantities built from (ratios of) fourvector products.
- Are frame independent
- can be computed in any frame
- can be used as a check between two frames, result should not change
- We are all familiar with

$$
\begin{array}{lr}
x=-\frac{q^{2}}{2(p q)}=\frac{Q^{2}}{2(p q)}, & y=\frac{(p q)}{\left(p p_{e}\right)} \\
s=\left(p_{1}+p_{2}\right)^{2}, & t=\left(p_{1}-p_{3}\right)^{2}
\end{array}
$$

- Also transverse momentum $(p T, \phi)$ and $\operatorname{spin}\left(S_{L}, S_{T}, \phi S\right)$ can be introduced through invariants

Collinear Frame

- Used in physics analysis of (SI)DIS, decomposition of cross sections with variables defined in this frame
- Target and virtual photon 3-momentum are aligned and define z-axis \rightarrow target rest frame, Breit frame are special cases

- Electron momenta are in xz-plane ($p_{e, x}, p_{e^{\prime}, x}>0$)
- Spin vector (later) and final-state particle momenta have longitudinal $[L]$ and transverse components [T]
- Azimuthal angles ϕ_{i} defined in $x y$-plane relative to pos. x-axis (sign $(\phi) \leftrightarrow$ right hand rule).
\rightarrow orientation ϕ is opposite to Trento convention where z-axis is along \boldsymbol{q}

Collinear Frame: basis vectors

- Construct a set of 4 basis vectors (1 timelike, 3 spacelike) from $\left\{p, q, p_{e}\right\}$
(1) Use $\{p, q\}$ to span time + longitudinal component. 2 choices

$$
\begin{aligned}
L^{\mu} & \equiv p^{\mu}-\frac{(p q) q^{\mu}}{q^{2}}, \quad(q L)=0, \quad L^{2}>0, & L_{*}^{\mu}=q^{\mu}-\frac{(p q)}{p^{2}} p^{\mu}, \quad\left(p L_{*}\right)=0, \\
L^{2} & =\frac{(p q)^{2}}{Q^{2}}\left(1+\gamma^{2}\right)=\frac{Q^{2}}{4 x^{2}}\left(1+\gamma^{2}\right), & L_{*}^{2}=-\frac{(p q)^{2}}{p^{2}}\left(1+\gamma^{2}\right)=-\frac{Q^{2}}{M^{2}} L^{2} \\
\gamma^{2} \equiv \frac{M^{2} Q^{2}}{(p q)^{2}}=\frac{4 x^{2} M^{2}}{Q^{2}} & &
\end{aligned}
$$

$$
e_{L}^{\mu} \equiv \frac{L^{\mu}}{\sqrt{L^{\mathbf{2}}}}, \quad e_{q}^{\mu} \equiv \frac{q^{\mu}}{\sqrt{-q^{\mathbf{2}}}}
$$

$$
e_{p}^{\mu} \equiv \frac{p^{\mu}}{\sqrt{p^{2}}}, \quad e_{L_{*}}^{\mu} \equiv \frac{L_{*}^{\mu}}{\sqrt{-L_{*}^{2}}},
$$

$$
e_{L}^{2}=1, \quad e_{q}^{2}=-1, \quad\left(e_{L} e_{q}\right)=0
$$

$$
e_{p}^{2}=1, \quad e_{L *}^{2}=-1, \quad\left(e_{p} e_{L *}\right)=0
$$

- 2 sets can be related: Eq. (3.29) Ref [3].

Collinear Frame: basis vectors

- Construct a set of 4 basis vectors (1 timelike, 3 spacelike) from $\left\{p, q, p_{e}\right\}$
(1) Use $\{p, q\}$ to span time + longitudinal component.

2 choices $\left\{e_{q}, e_{L}\right\},\left\{e_{p}, e_{L *}\right\}$
(2) Use p_{e} to construct two transverse unit vectors
\rightarrow two transverse 2D tensors

$$
\begin{aligned}
& g_{\perp}^{\mu v}=g^{\mu v}+e_{q}^{\mu} e_{q}^{v}-e_{L}^{\mu} e_{L}^{v}=g^{\mu v}+e_{L *}^{\mu} e_{L *}^{v}-e_{p}^{\mu} e_{p}^{v} \\
& \epsilon_{\perp}^{\mu v}=\epsilon^{\mu v \rho \sigma} e_{L, \rho} e_{q, \sigma}=\epsilon^{\mu v \rho \sigma} e_{p, \rho} e_{L *, \sigma} \quad\left[\epsilon^{\mathbf{0 1 2 3}}=\mathbf{1}\right]
\end{aligned}
$$

\rightarrow construct $e_{T 1}, e_{T 2}:$

$$
\begin{aligned}
& p_{e T}^{\mu}=p_{e}^{\mu}-\left(e_{p} p_{e}\right) e_{p}^{\mu}+\left(e_{L *} p_{e}\right) e_{L *}^{\mu}=g_{\perp}^{\mu \nu} p_{e, v} \\
& e_{T \mathbf{2}}^{\mu} \equiv \epsilon^{\mu \alpha \beta \gamma} e_{p, \alpha} e_{L *, \beta} e_{T \mathbf{1}, \gamma}=\epsilon^{\mu \alpha \beta \gamma} e_{L, \alpha} e_{q, \beta} e_{T \mathbf{1}, \gamma}=\epsilon_{\perp}^{\mu v} e_{T \mathbf{1}, v} \\
& e_{T \mathbf{1}}^{\mathbf{2}}=e_{T \mathbf{2}}^{\mathbf{2}}=-1 .
\end{aligned}
$$

$$
e_{T \mathbf{1}}^{\mu} \equiv \frac{p_{e T}^{\mu}}{\sqrt{-p_{e T}^{2}}}
$$

- In collinear frame $e_{T 1}=e_{x}, e_{T 2}=e_{y}$
- Definitions are completely covariant
\rightarrow these basis vectors can be constructed in any frame!

Kinematical variables: Lorentz invariants

■ Using the set $\left\{e_{p}, e_{L *}, e_{T 1}, e_{T 2}\right\}$ we can define Lorentz invariants

- can be calculated in any frame
- kinematical interpretation specific to collinear frames \rightarrow [cf. $p^{2}=m^{2}$, interpretation in rest frame]

- $\left|\boldsymbol{p}_{h T}\right|, \phi_{h}$ correspond to length,azimuthal angle of transverse part of \boldsymbol{p}_{h} in collinear frame

$$
\begin{aligned}
& z=\frac{p \cdot p_{h}}{p \cdot q} \\
& p_{h T}^{\mu}=p_{h}^{\mu}-\left(e_{p} p_{h}\right) e_{p}^{\mu}+\left(e_{L *} p_{h}\right) e_{L *}^{\mu}=g_{\perp}^{\mu v} p_{h, v} \\
& \left|\boldsymbol{p}_{h T}\right|=\sqrt{-p_{h T}^{2}}=\sqrt{-p_{h}^{\mu} p_{h}^{v} g_{\perp, \mu v}} \\
& \left|\boldsymbol{p}_{h T}\right| \cos \phi_{h}=\left(-e_{T \mathbf{1}} \cdot p_{h}\right),
\end{aligned}
$$

$$
\left|\boldsymbol{p}_{h T}\right| \sin \phi_{h}=\left(-e_{T 2} \cdot p_{h}\right)
$$

Spin vector: Lorentz invariants

- Polarization state of particle determined by density matrix
- For spin $1 / 2$ in rest frame characterized by 3D vector \boldsymbol{S}
- For moving particle: covariant spin 4vector $s^{\mu}(p \cdot s=0)$.
- s^{μ} reached by boosting rest frame $s_{R}^{\mu}=(0, \boldsymbol{S})$ with the same canonical boost used to transform $p_{R}^{\mu}=(M, 0) \rightarrow p^{\mu}$
- s^{μ} can be decomposed as

$$
\begin{array}{ll}
s^{\mu}=-\left(s \cdot e_{L *}\right) e_{L_{*}}^{\mu}+s_{T}^{\mu}, & S_{L} \equiv\left(s \cdot e_{L *}\right)=\frac{(s \cdot q)}{(s \cdot p)} \frac{M}{\sqrt{1+\gamma^{2}}} \\
S_{T} \cos \phi s \equiv-\left(e_{T 1} s\right)=-\left(e_{T 1} s_{T}\right), & S_{T} \sin \phi S \equiv-\left(e_{T 2} s\right)=-\left(e_{T 2} s_{T}\right)
\end{array}
$$

- $S_{L}=1$ means polarization along \boldsymbol{p} in coll. frames.
- Physical interpretation? Related to components of \boldsymbol{S} in rest frame
(z-axis opposite \boldsymbol{q}, x-axis in electron plane)

$$
S_{L} \equiv S^{z}, \quad\left(S_{T} \cos \phi_{S}, S_{T} \sin \phi_{S}\right) \equiv\left(S^{x}, S^{y}\right)
$$

- S_{L}, S_{T}, ϕ_{S} differ event from event

Step by Step

- Can be carried out in any frame (lab frame, head-on, collinear, etc.)
- 4vectors of particles known in particular frame

■ Construct basis $\left\{e_{p}, e_{L *}, e_{T 1}, e_{T 2}\right\}$ or $\left\{e_{L}, e_{q}, e_{T 1}, e_{T 2}\right\}$ in that frame

- Use both the particle four-vectors and basis vectors constructed in that frame to calculate invariants: $z,\left|\boldsymbol{p}_{h} T\right|, \phi_{h}, S_{L}, S_{T}, \phi_{S}$. [Physical interpretation is in collinear frame $\left(p_{h}\right)$ or rest frame (S)]
- Any procedure that incorporates explicit rotations and/or boosts can be validated by comparing the invariants computed in the lab frame with the invariants explicitly computed in the boosted frame.
- Do we need head-on [ep] frame?

Example

- Input
- ep $18 \times 275 \mathrm{GeV}, Q^{2}=20 \mathrm{GeV}^{2}, x=0.056$, random $\phi_{e^{\prime}}=\pi / 4$ $\rightarrow q=(0.085,-3.13,-3.13,-0.64)$
- p_{h} : pion $30 \mathrm{GeV}, \theta_{\text {Lab }}=\mathbf{1 0}^{\mathbf{\circ}}$, random $\phi_{\text {Lab }}$ proton spin: longitudinal along proton beam, transverse along lab $+x$
\rightarrow Invariants evaluated in lab frame directly
\rightarrow Lorentz transformation (boost + rot) to collinear frame implemented in python script.
\rightarrow Invariants calculated directly in collinear frame identical \Rightarrow can be done through 4 vector contractions or from components

25 mrad crossing angle, collider lab frame

$$
\begin{array}{ll}
z=0.91, & p_{h} T=9.634 \mathrm{GeV} \\
\cos \phi_{h}=0.954, & \sin \phi_{h}=-0.300
\end{array}
$$

Longitudinal beam pol.

$$
\begin{array}{lr}
S_{L}=0.99, & S_{T}=0.023 \\
\cos \phi_{S}=-1.00, & \sin \phi_{S}=0.00
\end{array}
$$

Transverse beam pol.

$$
\begin{array}{lr}
S_{L}=0.016, & S_{T}=0.99, \\
\cos \phi S=0.708, & \sin \phi S=-0.706 \\
\text { Wim Cosyn (FIU) } &
\end{array}
$$

```
Are q and p antiparallel after the boost? True
Q^2,x: 19.99971527284311 0.05604433661952916
check unitvector dots: 1.0 -1.0000000000002274 -0.99999999999998
check unitvector dots2: -1.0000000000004547 -1.4988357199199224c
Invariants in collinear-frames
ormpreand angles we also cempares
wth values obtalned directly from fourvectors
z: 0.9082894440529362
pht: 9.63381417719885 9.63381417719891
cosphth: 0.9540860975424624 0.9540860976444989
stnphth: -0.2995324995414246 -0.2995324995413547
\mp@subsup{\operatorname{cos}}{}{\wedge}2+\mp@subsup{\operatorname{sin}}{}{\wedge}2: 0.9999999998053386
Long. SL: 0.9997287347448491
long. ST: 0.023290704995511814 0.023290704995515027
long. cosphis: -0.9999999998779286-1.0
long. sinphis: -1.3960428892218935e-13 -1.417869226220847e-13
cos^2+sin^2: 0.9999999997558573
Transv. SL: 0.016487254755872982
Transv. ST: 0.9998640759776375 0.9998640759776375
Iransv. cosphis: 0.7077940770788836 0.7077940770788367
Transv. sinsphis: -0.7064188165041053 -0.7064188166039448
cos^2+5in^^2: 1.0000000000002933
```


Influence of crossing angle?

- Input
- ep $18 \times 275 \mathrm{GeV}, Q^{\mathbf{2}}=20 \mathrm{GeV}^{2}, x \approx 0.05$, random $\phi_{e^{\prime}}=\pi / 4$ $\rightarrow q=(0.085,-3.13,-3.13,-0.64)$
- p_{h} : pion $30 \mathrm{GeV}, \theta_{\text {Lab }}=1 \mathbf{1 0}^{\mathbf{o}}$, random $\phi_{\text {Lab }}$
proton spin: longitudinal along proton beam, transverse along lab $+x$
- $\quad \rightarrow$ Invariants evaluated in lab frame directly

two different physical situations in collider LAB frame!

reality: 25 mrad crossing angle, $x=0.056$

$$
\begin{array}{ll}
z=0.91, & p_{h T}=9.634 \mathrm{GeV} \\
\cos \phi_{h}=0.954, & \sin \phi_{h}=-0.300
\end{array}
$$

Longitudinal beam pol.

$$
\begin{array}{lr}
S_{L}=0.99, & S_{T}=0.023 \\
\cos \phi_{S}=-1.00, & \sin \phi_{S}=0.00
\end{array}
$$

Transverse beam pol.

$$
\begin{array}{lr}
S_{L}=0.016, & S_{T}=0.99 \\
\cos \phi_{S}=0.708, & \sin \phi_{S}=-0.706
\end{array}
$$

$$
\text { hypothetical: } 0^{\circ} \text { angle, } x=0.05
$$

$$
\begin{array}{ll}
z=0.63, & p_{h} T=7.78 \mathrm{GeV}, \\
\cos \phi_{h}=0.953, & \sin \phi_{h}=-0.304
\end{array}
$$

Longitudinal beam pol.

$$
\begin{array}{lr}
S_{L}=0.99, & S_{T}=0.021 \\
\cos \phi_{S}=-1.00, & \sin \phi_{S}=0.00
\end{array}
$$

Transverse beam pol.

$$
\begin{array}{lr}
S_{L}=0.015, & S_{T}=0.99 \\
\cos \phi_{S}=0.707, & \sin \phi_{S}=-0.707
\end{array}
$$

Comparison of onlu one kinematic!

