Use of kinematical Lorentz invariants

Wim Cosyn

FIU

Crossing angle meeting Oct 26, 2021

with input from C. Weiss, A. Bacchetta

Based on several sources:

- 1 Bacchetta, D'Alesio, Diehl, Miller, "SSAs: Trento conventions" https://arxiv.org/abs/hep-ph/0410050v2
- 2 Bacchetta et al., "SIDIS at small p_T https://iopscience.iop.org/ article/10.1088/1126-6708/2007/02/093
- 3 Cosyn, Weiss, "Neutron spin structure from polarized deuteron DIS with proton tagging", https://journals.aps.org/prc/abstract/10. 1103/PhysRevC.102.065204

Aim is pedagogical, so sometimes the obvious could be stated

Quantities built from (ratios of) fourvector products.

- Are frame independent
 - can be computed in any frame
 - ▶ can be used as a check between two frames, result should not change
- We are all familiar with

Also transverse momentum (pT, ϕ) and spin (S_L , S_T , ϕ_S) can be introduced through invariants

Collinear Frame

- Used in physics analysis of (SI)DIS, decomposition of cross sections with variables defined in this frame
- Target and virtual photon 3-momentum are aligned and define z-axis → target rest frame, Breit frame are special cases

- Electron momenta are in xz-plane $(p_{e,x}, p_{e',x} > 0)$
- Spin vector (later) and final-state particle momenta have longitudinal [L] and transverse components [T]
- Azimuthal angles ϕ_i defined in *xy*-plane relative to pos. *x*-axis (sign(ϕ) \leftrightarrow right hand rule).

ightarrow orientation ϕ is opposite to Trento convention where *z*-axis is along *q*

Collinear Frame: basis vectors

Construct a set of 4 basis vectors (1 timelike, 3 spacelike) from {*p*, *q*, *p*_e} **(1)** Use $\{p, q\}$ to span time + longitudinal component. 2 choices

Oct 26, 2021 5/11

Collinear Frame: basis vectors

- Construct a set of 4 basis vectors (1 timelike, 3 spacelike) from {*p*, *q*, *p*_e}
- Use {p, q} to span time + longitudinal component.
 2 choices {e_q, e_L}, {e_p, e_{L*}}
- 2 Use p_e to construct two transverse unit vectors

 \rightarrow two transverse 2D tensors

$$\begin{split} \mathbf{g}_{\perp}^{\mu\nu} &= \mathbf{g}^{\mu\nu} + \mathbf{e}_{q}^{\mu} \mathbf{e}_{q}^{\nu} - \mathbf{e}_{L}^{\mu} \mathbf{e}_{L}^{\nu} = \mathbf{g}^{\mu\nu} + \mathbf{e}_{L}^{\mu} \mathbf{e}_{L}^{\nu} - \mathbf{e}_{p}^{\mu} \mathbf{e}_{p}^{\nu} \\ \epsilon_{\perp}^{\mu\nu} &= \epsilon^{\mu\nu\rho\sigma} \mathbf{e}_{L,\rho} \mathbf{e}_{q,\sigma} = \epsilon^{\mu\nu\rho\sigma} \mathbf{e}_{\rho,\rho} \mathbf{e}_{L,\sigma} \quad [\epsilon^{\mathbf{0123}} = \mathbf{1}] \end{split}$$

 \rightarrow construct e_{T1} , e_{T2} :

$$p_{eT}^{\mu} = p_{e}^{\mu} - (e_{p}p_{e})e_{p}^{\mu} + (e_{L*}p_{e})e_{L*}^{\mu} = g_{\perp}^{\mu\nu}p_{e,\nu}, \qquad e_{T1}^{\mu} \equiv \frac{p_{eT}^{\mu}}{\sqrt{-p_{eT}^{2}}},$$

$$\begin{split} e_{T2}^{\mu} &= \epsilon^{\mu\alpha\beta\gamma} e_{p,\alpha} e_{L^*,\beta} e_{T1,\gamma} = \epsilon^{\mu\alpha\beta\gamma} e_{L,\alpha} e_{q,\beta} e_{T1,\gamma} = \epsilon_{\perp}^{\mu\nu} e_{T1,\nu} \\ e_{T1}^{\tau} &= e_{T2}^2 = -1. \end{split}$$

- In collinear frame $e_{T1} = e_x$, $e_{T2} = e_y$
- Definitions are completely covariant
 - → these basis vectors can be constructed in any frame!

Kinematical variables: Lorentz invariants

Using the set $\{e_p, e_{L*}, e_{T1}, e_{T2}\}$ we can define Lorentz invariants

- can be calculated in any frame
- kinematical interpretation specific to collinear frames

 \rightarrow [cf. $p^2 = m^2$, interpretation in rest frame]

■ $|\mathbf{p}_{hT}|$, ϕ_h correspond to length, azimuthal angle of transverse part of \mathbf{p}_h in collinear frame

Spin vector: Lorentz invariants

- Polarization state of particle determined by density matrix
 - ► For spin 1/2 in rest frame characterized by 3D vector **S**
 - For moving particle: covariant spin 4vector s^{μ} ($p \cdot s = 0$).
 - ▶ s^{μ} reached by boosting rest frame $s_R^{\mu} = (0, S)$ with the same canonical boost used to transform $p_R^{\mu} = (M, 0) \rightarrow p^{\mu}$

 s^{μ} can be decomposed as

$$\begin{split} s^{\mu} &= -(s \cdot e_{L*})e_{L*}^{\mu} + s_{T}^{\mu} , & S_{L} \equiv (s \cdot e_{L*}) = \frac{(s \cdot q)}{(s \cdot p)}\frac{M}{\sqrt{1 + \gamma^{2}}} \\ S_{T} \cos \phi_{S} \equiv -(e_{T1}s) = -(e_{T1}s_{T}) , & S_{T} \sin \phi_{S} \equiv -(e_{T2}s) = -(e_{T2}s_{T}) \end{split}$$

- **S**_L = 1 means polarization **along** \boldsymbol{p} in coll. frames.
- Physical interpretation? Related to components of S in rest frame (z-axis opposite q, x-axis in electron plane)

- Can be carried out in any frame (lab frame, head-on, collinear, etc.)
- 4vectors of particles known in particular frame
- Construct basis $\{e_p, e_{L*}, e_{T1}, e_{T2}\}$ or $\{e_L, e_q, e_{T1}, e_{T2}\}$ in that frame
- Use both the particle four-vectors and basis vectors constructed in that frame to calculate invariants: z, $|p_hT|$, ϕ_h , S_L , S_T , ϕ_S . . [Physical interpretation is in collinear frame (p_h) or rest frame (S)]
- Any procedure that incorporates explicit rotations and/or boosts can be validated by comparing the invariants computed in the lab frame with the invariants explicitly computed in the boosted frame.
- Do we need head-on [*ep*] frame?

Example

Input

- ▶ ep 18 × 275 GeV, $Q^2 = 20 \text{ GeV}^2$, x = 0.056, random $\phi_{e'} = \pi/4$ $\rightarrow q = (0.085, -3.13, -3.13, -0.64)$
- p_h : pion 30 GeV, $\theta_{Lab} = 10^o$, random ϕ_{Lab}
- proton spin: longitudinal along proton beam, transverse along lab +x
- \rightarrow Invariants evaluated in lab frame directly
- → Lorentz transformation (boost + rot) to collinear frame implemented in python script.
- \rightarrow Invariants calculated directly in collinear frame <code>identical</code>
 - \Rightarrow can be done through 4vector contractions or from components

25mrad crossing angle, collider lab frame

z = 0.91,	p _{hT} = 9.634 GeV
$\cos \phi_h = 0.954$,	$\sin \phi_h = -0.300$

Longitudinal beam pol.

$S_L = 0.99$,	$S_T = 0.023$,		
$\cos \phi s = -1.00$	$\sin \phi \mathbf{c} = 0.00$		

Transverse beam pol.

$S_L = 0.016$,	$S_{T} = 0.99$,
$\cos \phi_{S} = 0.708$,	$\sin \phi_S = -0.706$
Wim Cosyn (FIU)	

25mrad crossing angle, collinear frame

are q and p antiparallel after the boost? True
^2,x: 19.99971527284311 0.05604433661952916
heck unitvector dots: 1.0 -1.00000000000002274 -0.999999999999999999999999999999999999
heck unitvector dots2: -1.0000000000004547 -1.49883571991992244
A 9882894438529362 121 S mins - nm mins/massn
ht: 9.63381417719885 9.63381417719891ppx-massp/massp/massp/m
ocobib: 0.9540860975424624 0.9540860976444989 51(5.0) uses min
inphih: -A 2005324005414246 -A 2005324005413547 or for transve
A602+61002+ A 0000000008653386
000 SI + 8 0007287347448401
ong ST: 0.022200704005511014 0.022200704005515027
ong. cosphis: .A 9999999998779286 .1 A
ong. cospits: -1.30604288022180356.13 -1.4178602262208476.13
or02+rin02: @ 000000007550572
a printing out o
raney SI: A A16407254755072002(De out.dot(De out))
CODEV. ST. 0.0000640750776375 0.0000640750776375
concu complify 0 7077040770700026 0 7077040770700267
concu. closofic. A 7664100166041002 A 7664100166020440
Tansv. Schspills0.7004188100041053 -0.7004188100039448
05-2+Stil-2: 1.00000000002933

Oct 26, 2021 10/11

Influence of crossing angle?

Input

- ▶ *ep* 18 × 275 GeV, $Q^2 = 20$ GeV², $x \approx 0.05$, random $\phi_{e'} = \pi/4$ $\rightarrow q = (0.085, -3.13, -3.13, -0.64)$
- p_h : pion 30 GeV, $\theta_{Lab} = 10^{\circ}$, random ϕ_{Lab}
- proton spin: longitudinal along proton beam, transverse along lab +x
- \rightarrow Invariants evaluated in lab frame directly

two different physical situations in collider LAB frame!

reality: 25mrad crossing angle, x = 0.056			hypothetical: 0°	angle, <i>x</i> = 0.05		
z = 0.91, $\cos \phi_h = 0.954,$	$p_{hT} = 9.634 \text{ GeV}$ sin $\phi_h = -0.300$	_	z = 0.63, $\cos \phi_h = 0.953,$	$p_{hT} = 7.78$ GeV, sin $\phi_h = -0.304$		
ongitudinal beam pol.		I	Longitudinal beam pol.			
$S_L = 0.99$,	$S_{T} = 0.023$,		$S_L = 0.99$,	$S_{T} = 0.021$,		
$\cos\phi_{\mathcal{S}}=-1.00$,	$\sin\phi_{\pmb{S}}=\pmb{0.00}$		$\cos\phi_{m{S}}=-1.00$,	$\sin\phi_{\pmb{S}}=\pmb{0.00}$		
Fransverse beam pol.			Transverse beam pol.			
$S_L = 0.016$,	$S_{T} = 0.99,$		$S_L = 0.015$,	$S_T = 0.99$,		
$\cos\phi_{m{S}}={m{0.708}}$,	$\sin\phi_{\pmb{S}}=-\pmb{0.706}$		$\cos\phi_{m{S}}={m{0.707}}$,	$\sin\phi_{\pmb{S}}=-\pmb{0}.\pmb{7}\pmb{0}\pmb{7}$		
Comparison of only one kinematic						
Wim Cosun (EILI)				Oct 26, 2021	11/11	