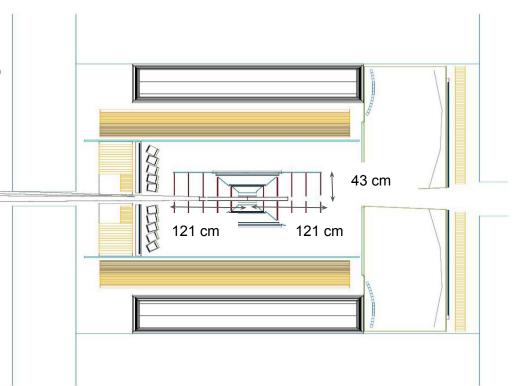
Hybrid Tracker Update

F. Bossu, D. Elia, L. Gonella, M. Posik ATHENA WG Convener meeting 29 October 2021

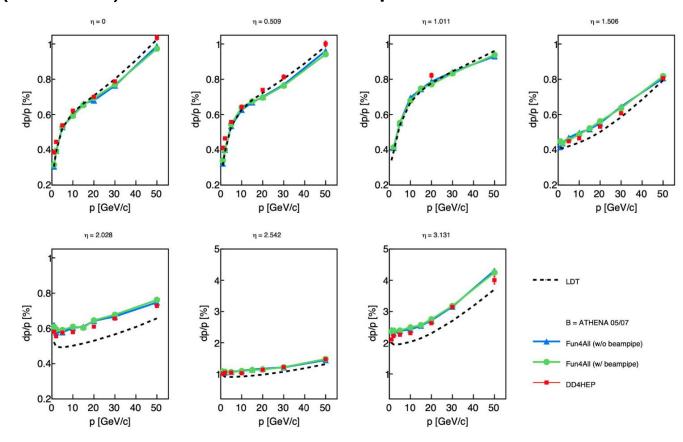
Baseline 0 (Acadia)

 First detector configuration implemented into ATHENA simulation framework

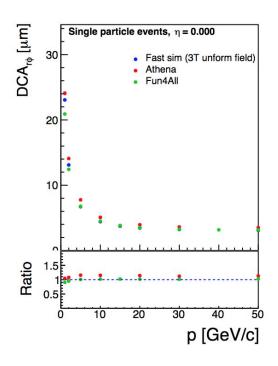

Thank you software group!

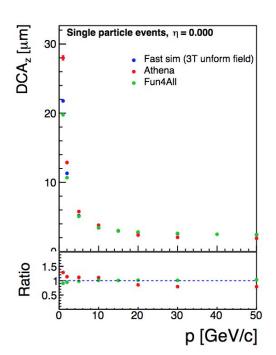
Primary tracking system based on Si

Symmetric forward-backward tracking configuration

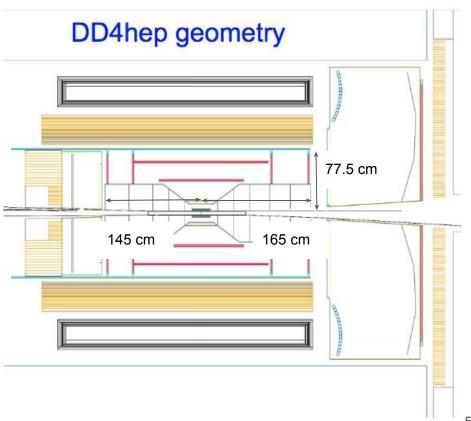

Radial tracking out to 43 cm

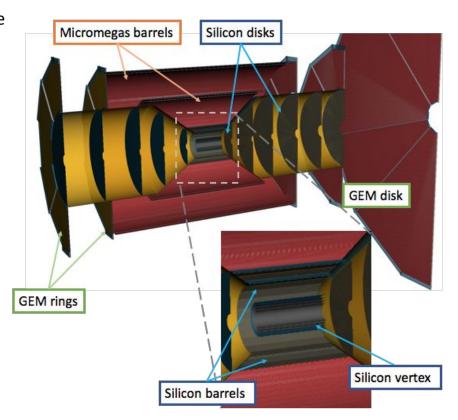
GEM disk behind mRICH and dRICH


Baseline 0 (Acadia): Simulation Comparison


Rev. Shujie, and Ernst

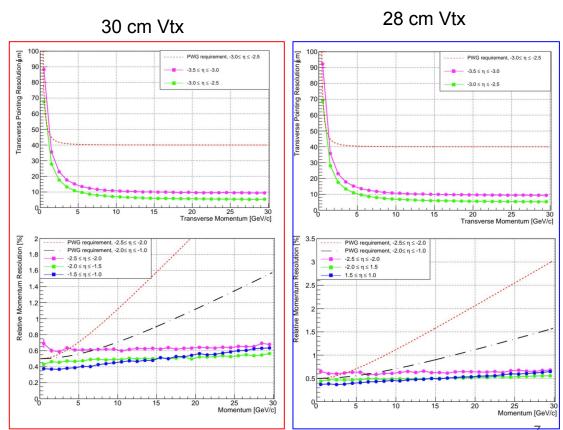
Baseline 0 (Acadia): Simulation Comparison


Wenging Fan


Baseline 2 (Canyonlands)

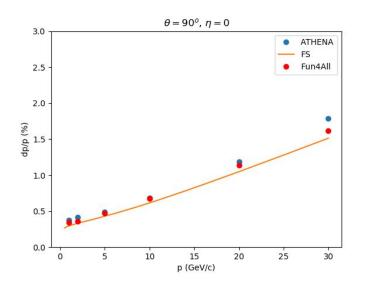
- Latest detector configuration implemented into ATHENA simulation framework
 - Thank you software group!
- Hybrid primary tracking system based on Si + **MPGD**
 - asymmetric forward-backward tracking configuration
 - Radial tracking out to 77.5 cm
- GEM disk behind dRICH for PID seeding

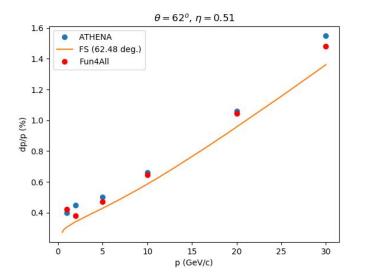
Baseline 2 (Canyonlands)


- Complementary silicon and MPGD technologies to provide a cost efficient tracking solution capable of achieving excellent momentum, angular, and vertex reconstruction resolutions and large eta coverage
- Central Tracker
 - 3 Si vertex layers
 - 2 Si barrel layers
 - 4 micromegas barrel layers
- Backward Tracker
 - 5 Si disks
 - o 2 GEM rings
- Forward Tracker
 - o 6 Si disks
 - o 2 GEM rings
 - Large GEM disk behind dRICH (aid in PID seeding)
- GEMs are currently implemented in simulation, but will serve as fall back option if μ RWell is not developed in time

Baseline 2 (Canyonlands): Fun4All Studies

- Initial baseline 2 performance studies
 before ATHENA implementation (Nick)
- Additional studies done looking at effect of shortening vertex layer lengths (Stephen)
 - Shorter length allows services to be routed through only the hadron side
 - Not a significant effect


Stephen



Baseline 2 (Canyonlands): Simulation Comparison

- Tracking evaluation from ATHENA framework underway
- Low eta region shows good agreement with fast simulation and Fun4All
- Tracks at low momentum and large eta needs additional investigation to understand their behavior

Shujie and Ernst, and Nick

Proposal Material

1. The ATHENA Detector

1.1 Vertex and Tracking System (4 pages)

ATHENA will utilise a vertex and tracking system that comprises silicon Monolithic Active Pixel Sensors (MAPS) closest to the interaction point and Micro-Pattern Gaseous Detectors (MPGDs) further out. The layout of the vertex and tracking system is illustrated in Fig. 1.1. A compact inner silicon barrel is shown in blue and consists of three vertex layers and two barrel layers occupying a region that has a maximum radius of 18 cm and a total length of 48 cm. The vertex layers are made of large-area, wafer-scale, stitched sensors that are bent around the beam pipe. The barrel layers comprise a more traditional stave design that uses smaller stitched sensors. The two outermost barrel layers will each comprise two closely-spaced layers of micro mesh gas detectors (Micromegas) with mean radii of approximately 49 cm and 76 cm and maximum total lenath of approximately 200 cm.

In the forward and backward directions, the vertex and tracking system consists of silicon disks (shown in red) augmented by large-area gas electron multipliers (GEMs). The silicon disks will use the same sensor technology as the vertex and barrel layers. There are five disks in the backward (electron going) direction and six disks in the forward (proton/nucleus going) direction. They start 25 cm either dise of the interaction point and extend to 145 cm in the backward direction and 165 cm in the forward direction. The maximum outer radius of the disks is approximately 43 cm. The minimum radii are determined by the divergence of the beam pipe. In the forward and backward directions there are two large-area triple-GEMs rings that extend the acceptance for tracks in the pseudorapidity interval $1.1 < |\eta| < 1.7$. A further large-area triple-GEM tracker is located behind the dRICH detector in the forward direction, whose primary purpose will be to see the dRICH ring finder.

1.1.1 Choice of technology

The silicon detectors will use the latest 65 nm MAPS technology that was identified in the Yellow Report [1] as being the best candidate to meet the stringent requirements on vertex and momentum resolution for physics at the EIC. [Comment: Might want to rephrase this in light of the tracking performance. Were the requirements too stringent? This technology is currently being developed for an upgrade of the inner tracking system of the ALICE experiment at the CERN LHC and the upgraded detector (ITS3) is expected to be ready for installation during the next long shutdown beginning at the start of 2025 and ending in mid-2027. To maximise the success of this development, groups external to ALICE have been invited to join the R&D effort with a view to develop the technology, also for other applications. One such group is the EIC Silicon Consortium, which has grown out of the EIC Generic R&D program (eRD16/eRD18/eRD25) and whose leadership is made up of members of the ATHENA collaboration. The specifications of proposed ITS3 sensor already meet most, if not all, of the requirements of the EIC. The overarching goal of ITS3 is to achieve a pixel pitch down to $10 \,\mu m$ while keeping power dissipation below 20 mW cm⁻² to construct a vertex detector with a space point resolution of better than 5 µm for a material thickness of just 0.05% X/X₀ per layer. By comparison, the vertex layers in the current ALICE ITS (ITS2) have a pixel pitch of approximately 30 µm, dissipate 40 mW cm⁻² and have a material thickness of 0.35% X/Xn.

For the three innermost vertex layers of the tracking system, ATHENA will adopt the ALICE ITS3 concept of large-area, wafer-scale stitched sensors, thinned to below $50\,\mu\text{m}$, bent around the beam pipe and held in place using low mass support structures [2]. The low power dissipation of the sensor will enable air cooling of the vertex layers, which is a key factor in reducing the material thickness of the inner

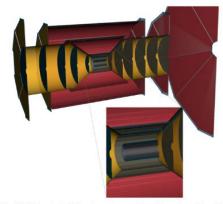


Figure 1.1: ATHENA baseline hybriol tracking system comprising silicon vertex and barrel layers and forward/backward silicon disks (MAPS) complemented by large-area Micro-Pattern Gaseous Detectors in the outer barrel layers (Micromegas) and forward/backward disks (GEMs).

most tracking layers, crucial to achieve the required vertex reconstruction resolution. The geometry of the beam pipe at the EIC differs from that in ALCE and the outer radius is somewhat larger but we expect to achieve a material thickness below $0.1\%~X/X_0$ in the vertex layers. The barrel layers and forward/backward disks will use more conventional flat sensors, also stitched but not to wafer scale, mounted on flat support structures: staves and half-disks. The material thickness of the staves and disks has been estimated by scaling the material thickness of the existing ALICE ITS2 barrel layers [3] according to the power dissipation of the new 65 ms sensor. This leads to an estimate of $0.5\%~X/X_0$ in each of the two barrel layers and $0.24\%~X/X_0$ for the disks. The EIC Silicon Consortium will play a key part in the ITS3 sensor development, ensuring that it meets the requirements of the EIC, while also developing EIC-specific support structures and services, in particular for the barrel layers and disks (see Section 1.1.3).

[Comment: In the current hybrid design, the barrel layers are up to 48 cm in length. This is a factor of two smaller than the middle layers of ITS2, which have a material thickness of approximately 1% X/X₀. (About 50% of this comes from the flex cables). The estimate of 0.55% X/X₀ seems reasonable for the barrel layers but why are the thickness of the disks a factor of 2 smaller? Can this be justified?

MPGD technologies such as GEMs, Micromegas and micro-resistive well (μ RWell) detectors are a cost effective solution for large-area tracking systems requiring a low material budget. GEMs and

2

Proposal Material

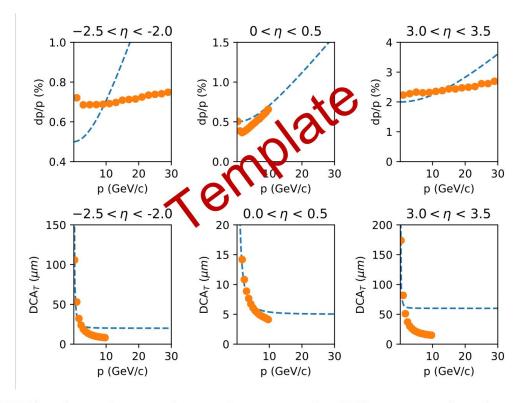


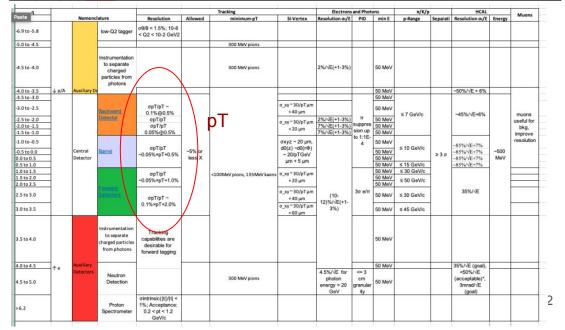
Figure 2: ATHENA tracking performance of generated pions compared to PWG requirements (curves) for selected η bins. Top row: momentum resolutions vs. momentum. Bottom row: Transverse DCA performance vs. momentum.

Proposal Material

			Tracking perfor	mance (ATHENA base	line, B = 3 T)				
			Momen	tum res.	Transverse pointing res.				
η			Performance	Requirements	Performance	Requirements			
-3.5 to -3.0			σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ∈ 0.5%	dca(xy) ~ 60/pT μm e 20 μm				
-3.0 to -2.5		Backward	Op/p = 0.176×p = 276	Op/p = 0.1 /6×p = 0.0 /6	oca(xy) = ocept pin = 20 pin	dca(xy) ~ 30/pT μm @ 40 μm			
-2.5 to -2.0		Detector	σp/p ~ 0.02%×p ⊕ 1%			dca(xy) ~ 30/pT μm e 20 μm			
-2.0 to -1.5		Detector		σp/p ~ 0.05%×p @ 0.5%	dca(xy) ~ 40/pT μm e 10 μm				
-1.5 to -1.0									
-1.0 to -0.5	Secretary and		σp/p ~ 0.02% ×p ⊕ 0.5%						
-0.5 to 0	Central Detector	Barrel		op o - 0.05%× e 0.5%	ca(x) ~ 3 /pT µm # 5 µm	dca(xy) ~ 20/pT μm = 5 μm			
0 to 0.5				0.00%	A(A) - STOT BIT SO BIT				
0.5 to 1.0				The second secon	N. N				
1.0 to 1.5			110 5 00 5 00 00 00 00 00 00 00 00 00 00 0	The second of the second	0	dca(xy) ~ 30/pT µm ● 20 µm			
1.5 to 2.0		Forward	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 1%	dca(xy) ~ 40/pT μm e 10 μm				
2.0 to 2.5		Detector				The state of the s			
2.5 to 3.0		Detector	σp/p ~ 0.1%×p θ 2%	σp/p ~ 0.1%×p e 2%	dca(xy) ~ 60/pT μm = 20 μm	dca(xy) ~ 30/pT μm # 40 μm			
3.0 to 3.5			Op/p = 0,176×p = 276	Opip - 0.176×p @ 276	oca(xy) - ocyp1 pm e 20 pm	dca(xy) ~ 30/pT μm # 60 μm			

Figure 3: Comparison of performance and PWG requirement parametrizations for relative momentum and transverse pointing resolutions as a function of momentum for the ATHENA baseline tracking system.

PWG Requirements


YR Table 3.1

Symmetric e/h large eta p requirements

YR Table 10.6

Asymmetric e/h large eta pT requirements

						Tracking					Electrons and Photons			π/K/p		HCAL						
η	θ		Nomenclature		Resolution	Relative Momentum	Allowed X/X _O	Minimum-pT	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution σ_E/E	PID	Min E Photon	p-Range (GeV/c)	Separation	Resolution σ_E/E	Energy	Muons				
< -4.6			Far Backward Detectors	low-Q2 tagger																		
-4.6 to -4.0		↓ p/A			Not Accessible																	
-4.0 to -3.5							$\overline{}$				Reduced Perform	mance										
-3.5 to -3.0					-	Ω _D /Ω												1				
-3.0 to -2.5									/	*0.2%*p95%	<u>۱</u>	100000000000000000000000000000000000000			1%/E ⊕ 2.5%/√E ⊕ 1%	n suppression up to 1:1E-4	20 MeV		ı	1000		
-2.5 to -2.0				Backward Detector		100 000	1 \	70-150 MeV/c (B=1.5 T)			210			≤10 GeV/c		50%/ √E⊕10%	ĺ					
-2.0 to -1.5			Central Detector			/	Ω _D /Ω: 0.04%×p=2%	١ ١	10.10.11	dca(xy) ~ 40/pT	dca(z) - 100/pT	2%/E ⊕(4-8)%/	rt suppression up	50 MeV			10000		Muons useful for bkg, improve			
-1.5 to -1.0									U.U-TANDOZA	١ ١		<u>μm @ 10 μm</u>	µm ⊕ 20 µm	<u>√E ⊕ 2%</u>	to 1:(1E-3 - 1E-2)	SU Mey	,				resolution	
-1.0 to -0.5										1 1								1			-	
-0.5 to 0.0							Barrel		Ω ₀ /Ω	-5% or less >	200 MeV/c	dca(xy) ~ 30/pT	dca(z) = 30/pT	2%/E ⊕/12- 141%/√E ⊕ (2-	rt suppression up	100 MeV	≤6 GeV/c	≥30	100%/	-500MeV		
0.0 to 0.5							barres		-0.04%×p91%	*2% or less /	200 MeV/C	μm 0 5 μm	<u>μm ⊕ 5 μm</u>	31%	to 1:1E-2	IUU Mev	≤ 6 GeV/C	230	√E+10%	-SOUMev		
0.5 to 1.0														100								
1.0 to 1.5									1 /		dca(xy) ~ 40/pT						1					
1.5 to 2.0						1		l 1	<u>⊈g/2</u> -0.04%∗p82%		22.5	μm @ 10 μm	dca(z) - 100/pT µm @ 20 µm	2%/E @	40,000				Tagash.			
2.0 to 2.5				Forward Detectors	\ \	0.0470-00270	/	70 - 150 MeV/c (8 = 1.5 T)			(4*-12)%√E @	30 e/n up to 15 GeV/c	50 MeV	≤ 50 GeV/c		50%/ √E+10%						
2.5 to 3.0					1	20/0	/	10-10-17			2%	34.04				10.10.10						
3.0 to 3.5					<u>ا</u> ا	-0.2%*pe5%	/				1											
3.5 to 4.0				Instrumentation to separate charged particles from photons			р				Reduced Perfor	mance										
4.0 to 4.5		†e								- 1	lot Accessible											
> 4.6			Far Forward Detectors	Proton Spectrometer Zero Degree Neutral Detection																		

PWG Requirements

- Requirements listed here are labeled p, but correspond to pT values on Table 10.6
- We should clear up this discrepancy

Table 11.23: Comparison of performance and requirements for the all-silicon concept at 3 T magnetic field.

				nance (All-silicon con		5000					
			Momen	tum res	Transverse pointing res.						
η			Performance	Requirements	Performance	Requirements					
-3.5 to -3.0				/	\						
-3.0 to -2.5		Backward Detector	σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 0.5%	dcx(xy) ~ 60/pT μm # 20 μm	dca(xy) - 30/pT μm e 40 μm					
-2.5 to -2.0			σp/p ~ 0.02%×p ⊕ 1% σp/p ~ 0.02%×p ⊕ 0.5%	The state of the s		dca(xy) ~ 30/pT µm ● 20 µr					
-2.0 to -1.5				σp/p ~ 0.05%×p ⊕ 0.5%	dca(xy) ~ 40/pT μm @ 10 μm						
-1.5 to -1.0											
-1.0 to -0.5						dca(xy) ~ 20/pT μm e 5 μn					
-0.5 to 0	Central Detector	Barrel		σp/p ~ 0.05%×p = 0.5%	dca(xy) ~ 30/pT µm # 5 µm						
0 to 0.5		Barrei		op/p ~ 0.05%×p • 0.5%	dca(xy) ~ 3u/p i µm ⊕ 5 µm						
0.5 to 1.0											
1.0 to 1.5											
1.5 to 2.0		Forward	σp/p ~ 0.02%×p ⊕ 1%	σp/p ~ 0.05%×p ⊕ 1%	dca(xy) ~ 40/pT μm ⊕ 10 μm	dca(xy) ~ 30/pT µm = 20 µr					
2.0 to 2.5						to accept the contract of the					
2.5 to 3.0		Detector			d-(-) 00(-F	dca(xy) ~ 30/pT μm = 40 μn					
3.0 to 3.5	1		σp/p ~ 0.1%×p ⊕ 2%	σp/p ~ 0.1%×p ⊕ 2%	dca(xy) ~ 60/pT μm ⊕ 20 μm	dca(xy) ~ 30/pT µm ● 60 µn					

Table 11.25: Comparison of performance and requirements for the hybrid concept at 3 T magnetic field.

			Tra	icking performance (H	lybrid	concept, B	= 3 T)				
100		1 9	Momentum re	s.	1	Minima	um pT	Transverse	erse pointing res.		
η			Performance	Requirements	Pt	erformance	Requirements	Performance	Requirements		
-3.5 to -3.0			op/p = 0.05%×p ⊕ 2%	σp/p = 0.1%×p ≈ 0.5%			100-150 MeV/c	dca(xy) = 50/pT μm Φ 10 μm			
-3.0 to -2.5]	Backward		opep - u. rye-p w u.osa			100-150 MeV/c	oca(xy) - surpri pint 4 to pin	dca(xy) - 30/pT μm e 40 μm		
-2.5 to -2.0	1	Detector	op/p ~ 0.11%×p + 0.4% (0-8 GeV/d)	- CANCELLO CONTROL CON	160	-220 MeV/c	100-150 MeV/c	discommendaries es escentrarial.	CALLS STATE		
-2.0 to -1.5			ap/p = 0.04%×p = 1% (8-30 GeV/d)	ap/p ~ 0.05%×p • 0.5%			100-150 MeV/c	dca(xy) ~ 25/pT μm # 3 μm	dca(xy) ~ 30/pT µm ≈ 20 µm		
-1.5 to -1.0			app cora-permitocodera)	*C1-5-5-5-5-5-5-5-6-5-6-5-6-6-6-6-6-6-6-6-	300 MeV/c		100-150 MeV/c				
-1.0 to -0.5											
-0.5 to 0	Central	Barrel	Barrel Op/p ~ 0.1176*p # 0.276 (0-	Barrel Op/p ~ 0.1176*p = 0.276 (0-0 GeV/C)	ap/p = 0.05%×p + 0.5%		00 MeV/c	100-150 MeV/c	dca(xy) ~ 15/pT μm # 2 μm	dca(xy) ~ 20/pT μm • 5 μm	
0 to 0.5	Detector			ap/p ~ 0.03%×p * 0.5% (5-30 GeV/c)			acceptance)				
0.5 to 1.0			25762 950 951 15		X1500		CAMPAGE AND				
1.0 to 1.5		Forward	op/p ~ 0.11%×p = 0.4% (0-8 GeV/c	E-171 AND VILLED TO (I)	3	00 MeV/c	100-150 MeV/c	former i new arcumire ar-ut	A CONTRACT OF THE STATE OF		
1.5 to 2.0				op/p ~ 0.05%×p ◆ 1%			100-150 MeV/c	dca(xy) ~ 25/pT μm # 3 μm	dca(xy) ~ 30/pT μm = 20 μm		
2.0 to 2.5				Detector	Mark 10 10 10 10 10 10 10 10 10 10 10 10 10	1/50	0-220 MeV/c	100-150 MeV/c		and the second s	
2.5 to 3.0		SAMPLE COLUMN	op/p ~ 0.05%×p ● 2%	σp/p ~ 0.1%×p = 2%			100-150 MeV/c	dca(xv) ~ 50/pT µm ≠ 10 µm	dca(xy) - 30/pT μm e 40 μm		
3.0 to 3.5			Oprp - 0.0076*p # 276	Opril - 0.1384 p 0 234			100-150 MeV/c	ocacyy - surp i pin w to pin	dca(xy) ~ 30/pT μm • 60 μm		