First Performance Plots of the B0 Calorimeter

Sasha Bylinkin, Michael Murray The University of Kansas

Far-Forward/Far-Backward Meeting, October 28th 2021

Outline

- Realistic B0
- B0 Calorimeter
- Performance plots with photons
 - Position resolution
 - Energy studies
- Summary

Realistic B0

Controlled shape parameters (with current values at IP6):

Layer Length (0.1, 0.2, 20cm) Layer Material (Si, Cu, PbWO4) Radius (20cm) Δ Radius (5cm) Spanning Angle (240°) Beampipe position (-3.4 cm)

B0 Calorimeter

One 20cm layer of PbW0₄ 2*2cm granulation implemented in current studies

B0 Calorimeter

One 20cm layer of PbW0₄ 2*2cm granulation implemented in current studies

Example of a 50 GeV photon in the forward direction

1-100 GeV photons produced in 3 < η < 7 range were used in further studies.

The reconstructed variables are from the ntp_cluster TTree produced by CaloEvaluator

Basic resolution plots for 1-100 GeV photons

Note: Reconstructed positions correspond to the cluster Position.

For the generated photon we have pseudorapidity η and angle ϕ – so x-y coordinates are calculated for the center of the B0 Calorimeter:

L = 688 cm.

Position resolution is in the 10mm range for the photons

More detailed look at position resolution x-resolution as a function of η

Position resolutions are the same for all energies and η

Basic resolution plots for 1-100 GeV photons

8

More detailed look at energy resolution

Energy resolution in η -energy plane

9

Where do the particles at $\eta \approx 4.5$ go?

The $\eta \approx 4.5$ region corresponds to the detector cut-off for the hadron beam pipe.

As the energy containment is worse near detector edges, we result in a drop for the rapidity distribution.

Brief look at other particles

As could be expected hadrons leave only around 10% of their energy in the B0 Calorimeter.

Summary

- The B0 Calorimeter have been implemented in Fun4All with the 2*2cm granularity
 - The pull request to merge the code to the master branch is expected early next week.
- First performance studies performed with the B0 Calorimeter for the generated photons
 - Position resolution is within 10 mm independent on the energy/pseudorapidity
 - Energy containment is above 80% for $[4 < \eta < 6.5]$, [20 < E < 100GeV] photons with a slight drop around $\eta \approx 4.5$ because of the detector cut-off for the hadron-beam pipe.
- Hadrons leave around 10% of their energy in the B0 Calorimeter.

Backup slides

Position resolution

X-resolution as a function of x-y coordinate

Y-resolution as a function of x-y coordinate

Energy containment

Energy resolution as a function of x-y coordinates

Hadrons

