Oscillating graphite as a light ion polarimeter?

Nigel Buttimore – Trinity College Dublin – Ireland

Vibrating arm of a graphite cantilever with a short spike in the beam

Rotating graphite paddle on a multi-walled carbon nano-tube support

November 3, 2021

Oscillating Carbon as an Ion Polarimeter?

BNL EIC November 3, 2021

VERTICAL CARBON CANTILEVER WITH SPIKE IN BEAM

Graphite of rectangular cross section is clamped at one end (in pipe)

- A 2 mm spike at other end moves a little into a p \uparrow or ³He \uparrow beam
- A particular ion bunch taking 13 μ s to go round the EIC resonates with the 5th mode of a cantilever of Young's modulus 194 GPa and density 2.2 g/cm³ if its height is 0.7 mm & its length in mm is

 $(5 - 1/2) [13 (194/2.2)^0.5 * 0.7 (pi/48^0.5)]^0.5 = 28$

where $k \approx 5 \pi - \pi/2$ is the 5th solution of eqn: $\cos k \, \cosh k = -1$

- Time of flight good for a trailing bunch as target leaves the beam
- Several successive bunches will hit target scattering carbon L & R

- Sublimation may be reduced as target oscillates away from bunches
- Vibrations of cantilevers and above factor $\pi/48^{0.5}$ appear in §7 of

https://ocw.mit.edu/courses/mechanical-engineering/2-002mechanics-and-materials-ii-spring-2004/labs/labU1Us04.pdf

- Difference between left and right scatters may help drive vibration
- For a target of circular cross-section, replace $48^{0.5}$ by 8 so that in

https://www.nature.com/articles/srep22600

a MWCNT cantilever of modulus 200 GPa, density 2.27 g/cm³, diameter 0.0001 mm, vibrating at frequency 1.518 MHz, has length

1.875 [(200/2.27)^0.5 * 0.0001/1.518/ 8pi]^0.5 = 0.0093 mm

WolframAlpha says first solution of $\cos k \cosh k = -1$ is $k \approx 1.875$

- Choose the diameter of the MWCNT to adjust rate of interaction
- An appendage of diameter 400 nm would be equivalent to a ribbon
- There may be electromagnetic ways of inducing an oscillation also
- Some MWCNTs conduct heat well and may help with sublimation
- Excess target charge may be conducted away by an (n, n) MWCNT
- Shedding flakes may fall through beam allowing an estimate of $p\uparrow$

Rotation is another way of arranging intermittent target interaction.

CARBON BLADE ROTATING ON A MWCNT WIRE AXLE

The horizontal MWCNT wire is suspended from one or two supports

- A rotating paddle target can be lowered into a polarized ion beam
- Beam bunches passing through blade of target may cause rotation
- A disk rotating on a MWNT is shown in Figure 3-1 on page 61 of dspace.mit.edu/bitstream/handle/1721.1/46796/429047845-MIT.pdf
- A 120 ns gap between target interactions enables ToF measurement
- The blade or blades are oriented at about 45 degrees either by suspending at that angle, or, by shaping each paddle appropriately

- Toothed nanometer gear wheels on MWCNT have been discussed
- Outer tubes of MWCNTs rotate with little friction on inner tubes
- A carbon paddle blade can hopefully be attached to the outer tubes
- Carbon nanobuds on either side of the paddles will prevent sliding
- A nanobud is a stable fullerene attached to a MWCNT's outer wall
- Several paddles could be distributed along the axle for redundancy

SUMMARY

Mode 5 of a 3 cm cantilever will resonate at 77 kHz if its height is 0.7 mm. Mode 34 will resonate at 54*77 kHz (240 ns), if achievable.

An ion beam may rotate the blade of a paddle on a long Multi-Walled Carbon Nano-Tube (< 50 cm) axle, suspended from one or two supports, to provide intermittent carbon recoils for polarimetry.