Virtual Reality visuals by Sean Preins

Mono-Charm Jet Events and an Estimate of Sensitivity to R_{eA}

Estimate from fast simulation

Miguel Arratia (UC-Riverside) and Stephen Sekula (SMU)

OVERVIEW

- Simulation and Methods
- Preliminary Results and Outlook

Simulation and Methods

- Generate NC DIS events with Q²>25 ($\sigma_{PYTHIA8} = 24.817$ nb) with 18x275 configuration \rightarrow in 100fb⁻¹ of EIC data, expect about 2.5B events.
 - Generate 25M events w/ PYTHIA8, CT18NNLO, and the **WeakBosonExchange:ff2ff(t:gmZ)** process only.
 - Scale yields up by 100 for subsequent calculations
- Fast-simulate ATHENA response with DELPHES and delphes_EIC/ATHENA.tcl
- Reconstruction:
 - For this study, given the minimum Q², reasonably assume the tagging electron will nearly always be in the detector.
 - Require exactly on R=1 jet with $p_T > 5$ GeV and $|\eta^j| < 3.0$, reconstructed in each event.
 - Require jet pass cut-based charm tagging using displaced tracks or kaons (see <u>https://wiki.bnl.gov/athena/index.php/JetsHF</u>), which is ~23% efficient on real charm jets)

Selection	Relative Efficiency
None	100%
Monojet [<i>True Mono-Charm</i>]	36.6% [11.1%]
Charm-Tagged Monojet [True Mono-Charm]	1.62% [59.8%]

Error Estimate for R_{eA}

For now, simulate only unpolarized e-p collisions and infer error on R_{eA} from this alone. Although intensity of e-A collisions will be lower by about 1/A but cross-section will increase by ~A, so integrated luminosity of e-A will be comparable to e-p. Error on charm-jet events in e-p collisions, including background subtraction, will be $\sqrt{S_{ep} + B_{ep}} = \sqrt{N_{ep}}$. Thus:

$$N_{eA} = R_{eA}N_{ep} \longrightarrow \delta R_{eA} = \sqrt{\frac{2R_{eA}}{N_{ep}}}$$

Just need from e-p simulation the yield of charm-tagged monojet events (N_{ep}) and assume a value for R_{eA} .

Charm-tagged jet distribution in z_{jet} consistent with previous studies on this population (c.f. arXiv:2006.10751). Error on R_{eA} projected using hypothesis for R_{eA} . In 100fb⁻¹ of e-p NC DIS events, PYTHIA8+DELPHES+ATHENA model predicts a total of almost 15 million charm-tagged mono-jet events, almost 60% of which are true charm.

Conclusions and Outlook

Charm Identification using Displaced Track Counting and Kaon ID

Key elements of backward/central/forward parts of detector (*not shown*: *very low angle components along beam line*):

- **Barrel:** 3T magnet, All-Silicon Tracker + Particle ID (HP-DIRC) + Calorimeters (EMCAL + Iron-Scintillator HCAL)
- Hadron-going direction (Forward): Tracking (Silicon Disks + Gas Electron Multiplier Layer), Particle ID (dual RICH), and Calorimeters (Tungsten Powder/Scintillating Fiber EMCAL + Iron-Scintillator HCAL)
- Electron-going direction (Backward): Tracking (Silicon Disks + Gas Electron Multiplier Layer), + Particle ID (modular RICH) + Calorimeters (Lead-Tungstate iEMCAL + oEMCAL + Iron-Scintillator HCAL)

Simulation and Methods

- Generate NC DIS events with Q²>25 ($\sigma_{PYTHIA8}$ = 19.532nb) with 10x275 configuration \rightarrow in 100fb⁻¹ of EIC data, expect about 20M events.
 - Generate 20M events w/ PYTHIA8, CT18NNLO, and the WeakBosonExchange:ff2ff(t:gmZ) process only.
- Fast-simulate ATHENA response with DELPHES and delphes_EIC/ATHENA.tcl
- Reconstruction:
 - For this study, given the Q², assume the tagging electron will nearly always be in the detector.
 - Require exactly two R=1 jets, each with $p_T > 5$ GeV, reconstructed in each event.
 - Require both jets pass cut-based charm tagging using displaced tracks or kaons (see <u>https://wiki.bnl.gov/athena/index.php/JetsHF</u>), which is ~23% efficient on real charm jets)

	Selection	Relative Efficiency
1	None	100%
	Dijets [True Di-Charm]	1.60% [11.2%]
	Di-Charm Tagged Jets [True Di-Charm]	0.193% <i>[60.0%]</i>