Virtual Reality visuals by Sean Preins

Di-Charm Jet Events and an Estimate of Sensitivity to the Gluon Sivers Asymmetry

Estimate from fast simulation

Miguel Arratia (UC-Riverside) and Stephen Sekula (SMU)

OVERVIEW

- Simulation and Methods
- Preliminary Results and Outlook

Simulation and Methods

- Generate NC DIS events with Q²>25 ($\sigma_{PYTHIA8} = 24.817$ nb) with 18x275 configuration \rightarrow in 100fb⁻¹ of EIC data, expect about 2.5B events.
 - Generate 25M events w/ PYTHIA8, CT18NNLO, and the **WeakBosonExchange:ff2ff(t:gmZ)** process only.
 - Scale yields up by 100 for subsequent calculations
- Fast-simulate ATHENA response with DELPHES and delphes_EIC/ATHENA.tcl
- Reconstruction:
 - For this study, given the minimum Q², reasonably assume the tagging electron will nearly always be in the detector.
 - Require exactly two R=1 jets, each with $p_T > 5$ GeV, reconstructed in each event.
 - Require both jets pass cut-based charm tagging using displaced tracks or kaons (see <u>https://wiki.bnl.gov/athena/index.php/JetsHF</u>), which is ~23% efficient on real charm jets)

Selection	Relative Efficiency
None	100%
Dijets [True Di-Charm]	2.56% [11.6%]
Charm-Tagged Dijets <i>[True Di-Charm]</i>	0.255% [53.3%]

Error Estimate for Di-Charm Jet Events

arXiv:1805.05290 and arXiv:2102.08337

$$\delta A = \sqrt{\frac{1}{P^2N} - \frac{A^2}{N}} \, \stackrel{P = 0.70}{\text{N = Yield in kinematic region}}_{\text{A = asymmetry}}$$

Assume polarization of beam points in y-direction (vertically upward); define ϕ_{kS} as angle between di-jet momentum in transverse plane and proton polarization vector.

For the next step, use <u>only</u> the truth-matched di-charm jet-tagged events in the statistical analysis (53% purity of the tagged di-jet events, or S/B \cong 1). Since N>>A, neglect second term and focus on $\delta A \cong 1/(\sigma P)$, where σ is the uncertainty on N. For a non-zero background, $\sigma = S/(S + B)^{\frac{1}{2}}$.

The uncertainty on A_{UT} from this di-charm study so far looks like it would be almost a factor of 2 smaller than that predicted in a similar measurement using D^0D^0 pairs. This is reasonable, given the inclusive use of jet reconstruction. Dilution by background subtractions is included in the above, using same assumptions as analysis on left.

Conclusions and Outlook

Charm Identification using Displaced Track Counting and Kaon ID

Key elements of backward/central/forward parts of detector (*not shown*: *very low angle components along beam line*):

- **Barrel:** 3T magnet, All-Silicon Tracker + Particle ID (HP-DIRC) + Calorimeters (EMCAL + Iron-Scintillator HCAL)
- Hadron-going direction (Forward): Tracking (Silicon Disks + Gas Electron Multiplier Layer), Particle ID (dual RICH), and Calorimeters (Tungsten Powder/Scintillating Fiber EMCAL + Iron-Scintillator HCAL)
- Electron-going direction (Backward): Tracking (Silicon Disks + Gas Electron Multiplier Layer), + Particle ID (modular RICH) + Calorimeters (Lead-Tungstate iEMCAL + oEMCAL + Iron-Scintillator HCAL)

Simulation and Methods

- Generate NC DIS events with Q²>25 ($\sigma_{PYTHIA8}$ = 19.532nb) with 10x275 configuration \rightarrow in 100fb⁻¹ of EIC data, expect about 20M events.
 - Generate 20M events w/ PYTHIA8, CT18NNLO, and the WeakBosonExchange:ff2ff(t:gmZ) process only.
- Fast-simulate ATHENA response with DELPHES and delphes_EIC/ATHENA.tcl
- Reconstruction:
 - For this study, given the Q², assume the tagging electron will nearly always be in the detector.
 - Require exactly two R=1 jets, each with $p_T > 5$ GeV, reconstructed in each event.
 - Require both jets pass cut-based charm tagging using displaced tracks or kaons (see <u>https://wiki.bnl.gov/athena/index.php/JetsHF</u>), which is ~23% efficient on real charm jets)

	Selection	Relative Efficiency
1	None	100%
	Dijets [True Di-Charm]	1.60% [11.2%]
	Di-Charm Tagged Jets [True Di-Charm]	0.193% <i>[60.0%]</i>