

The BEST Experiment

BNO INR RAS

Steve Elliott LANL

Baksan Experiment on Sterile Transitions (BEST)

arXiv:2109.11482 Spokesperson – Vladimir Gavrin

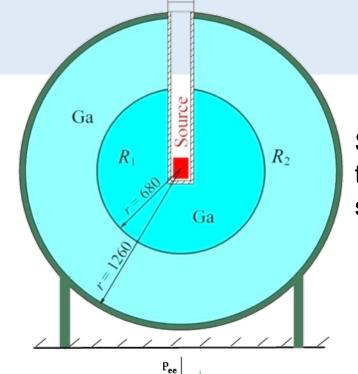
We thank the former Federal
Agency for Scientific
Organizations (FANO till 2019) of
Russian Federation, Ministry of
Science and Higher Education of
Russian Federation, State
Corporation ROSATOM, and the
Office of Nuclear Physics of the
US Department of Energy for
their support.

V.V. Barinov, B.T. Cleveland, S.N. Danshin, H. Ejiri, S.R. Elliott, D. Frekers, V.N. Gavrin, a V.V. Gorbachev, D.S. Gorbunov, W.C. Haxton, T.V. Ibragimova, I. Kim, Yu.P. Kozlova, 1 L.V. Kravchuk, V.V. Kuzminov, B.K. Lubsandorzhiev, Yu.M. Malyshkin, R. Massarczyk, V.A. Matveev, 8 I.N. Mirmov, 1 J.S. Nico, 9 A.L. Petelin, 10 R.G.H. Robertson, 11 D. Sinclair, 12 A.A. Shikhin, V.A. Tarasov, G.V. Trubnikov, E.P. Veretenkin, J.F. Wilkerson, and A.I. Zvir and A.I. ¹Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ²SNOLAB, Sudbury, ON P3Y 1N2, Canada ³Research Center for Nuclear Physics, Osaka University, Osaka, Japan ⁴Los Alamos National Laboratory, Los Alamos, NM, USA ⁵Institut für Kernphysik, Westfälische Wilhelms-Universität Munster, D-48149 Munster, Germany ⁶Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁷ Department of Physics, University of California, Berkeley, CA 94720, USA ⁸ Joint Institute for Nuclear Research (JINR) Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia ⁹National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA ¹⁰ JSC 'State Scientific Center Research Institute of Atomic Reactors', Dimitrovgrad, 433510, Russia ¹¹Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA ²Carleton University 1125 Colonel By Drive Ottawa, K1S 5B6, Canada ¹³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA ¹⁴ Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA

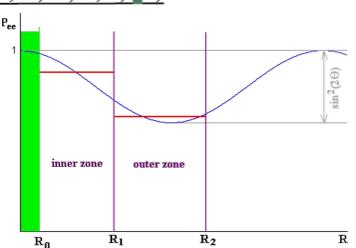
Overview of BEST

• Neutrinos produced at center of Ga by ⁵¹Cr decay:

$$^{51}\text{Cr} + \text{e}^{\text{-}} \rightarrow ^{51}\text{V} + \text{v}_{\text{e}}$$

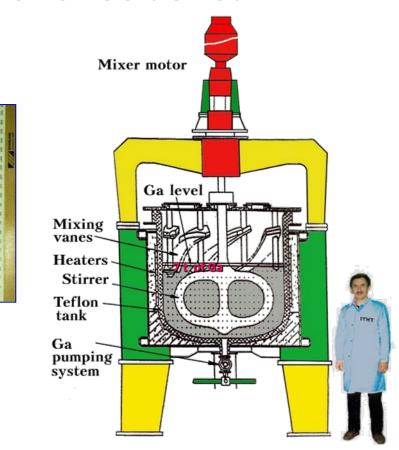

- This is a well-understood monochromatic spectrum of a compact source. The source intensity is well measured.
- These neutrinos are detected via a charged-current (CC) reaction on Ga surrounding the source:

$$v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-}$$

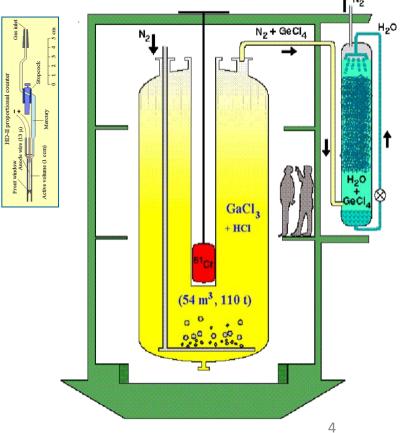

- Very Short Baseline. ~1m, two zone target to measure v interaction rate at two distances.
- Almost zero background. Mainly from the Sun.

The source, 3.4 MCi, provides a capture rate in the Ga that exceeds the rate from the Sun by several factors of ten.

- Well established experimental procedures for extraction and counting of the ⁷¹Ge developed in SAGE solar measurements.
- Simple interpretation of results. (Phys. Part. Nucl. 46 (2015) 131)

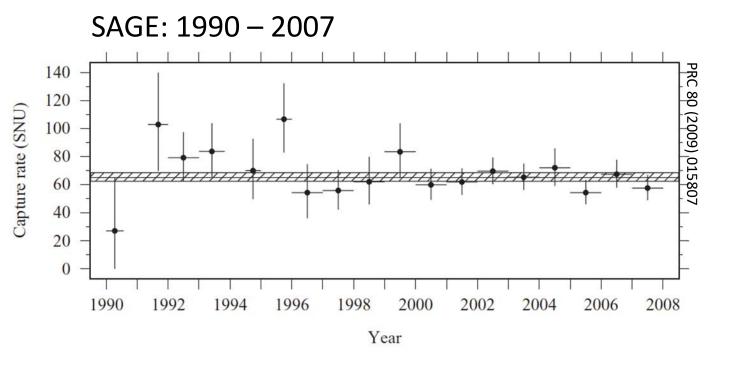


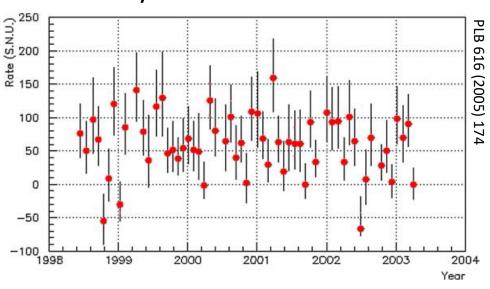
Schematic drawing of the BEST neutrino source experiment.


The Gallium Solar Neutrino Experiments (Kuzmin Eksp. Teor. Fiz. 49 (1965) 1532)

SAGE 50 t of Ga

Both experiments were based on radio-chemical extraction technology of a few 71Ge atoms from tons of a Ga target and on technology of counting of ⁷¹Ge decays in small proportional counters ($\sim 0.5 \text{ cm}^3$).


GALLEX/GNO 30.3 t of Ga


SAGE and GALLEX Results for Solar Neutrinos

SAGE/GALLEX/GNO: 66.1 ± 3.1 SNU (PRC 80 (2009) 015807)

Direct evidence for the p-p chain reactions for solar neutrino production in the Sun.

GALLEX/GNO: 1991 - 2003

(1 SNU = 1 interaction/s in a target that contains 10^{36} atoms of the neutrino absorbing isotope).

SAGE and GALLEX Neutrino Source Experiments

Neutrino sources:

⁵¹Cr: 747 keV (81.6%), 427 keV (9.0%), 752 keV (8.5%), 432 keV (0.9%)

³⁷Ar: 811 keV (90.2%), 813 keV (9.8%)

GALLEX:

1994 – 1995 $A(Cr_1) = 1.714 \pm 0.036 MCi$

1995 –1996 $A(Cr_2) = 1.868 \pm 0.073 \text{ MCi}$

SAGE:

1994 – 1995 $A(Cr) = 0.517 \pm 0.006 MCi$

 $A(Ar) = 0.409 \pm 0.002 \text{ MCi}$

Results:

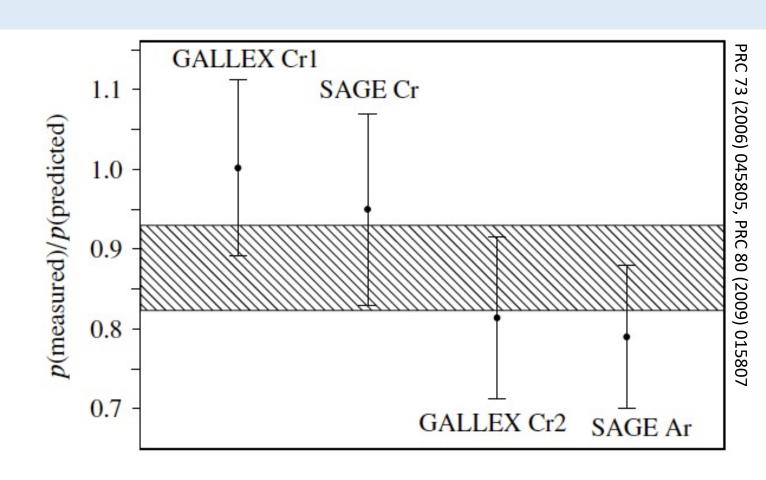
GALLEX:

PLB 342 (1995) $R_1(Cr) = 0.953 \pm 0.11$

PLB 420 (1998) $R_2(Cr) = 0.812 \pm 0.10$

SAGE:

PRC 59 (1999) $R_3(Cr) = 0.95 \pm 0.12$


PRC 73 (2006) $R_4(Ar) = 0.791 \pm 0.084$

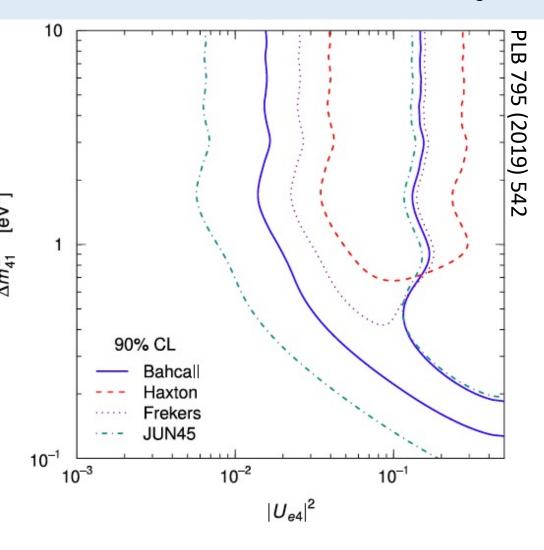
R – ratio of the measured production rate to that expected from the cross section (PRC 56 (1997) 3391) (no uncertainty on cross section included)

The Ga Anomaly

Previously measured rates of $^{71}\text{Ga}(\nu_e,e)^{71}\text{Ge}$ are lower than that predicted from the known cross section and ν_e flux. R=0.87±0.05

The v_e sources in these experiments were the electron-capture isotopes, ^{51}Cr or ^{37}Ar .

The Ga Anomaly has been considered evidence for sterile neutrinos (v_s)


The decreased rate of v_e detection has been interpreted with the hypothesis that the v_e are oscillating into undetected v_s . $E_v \sim 1$ MeV, L ~ 1 m.

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

Best fits tend toward high Δm^2 and $\sin^2 2\theta$.

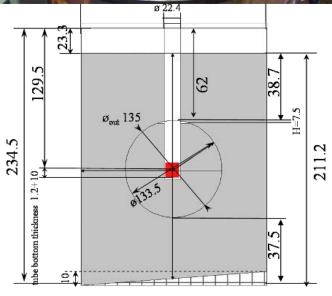
Some references

PRD 78 (2008) 073009, PLB 795 (2019) 542, arXiv:2001.10064, PRD 86 (2012) 113014, NP B168 Proc. Supp. (2007) 344, PRD 97 (2018) 073001, NP B235 Proc. Supp. (2013) 214, J. Phys. G: Nucl. Part. Phys. 43 (2016) 033001

BEST Schedule

Construction began 2011

Source Arrived: July 5, 2019

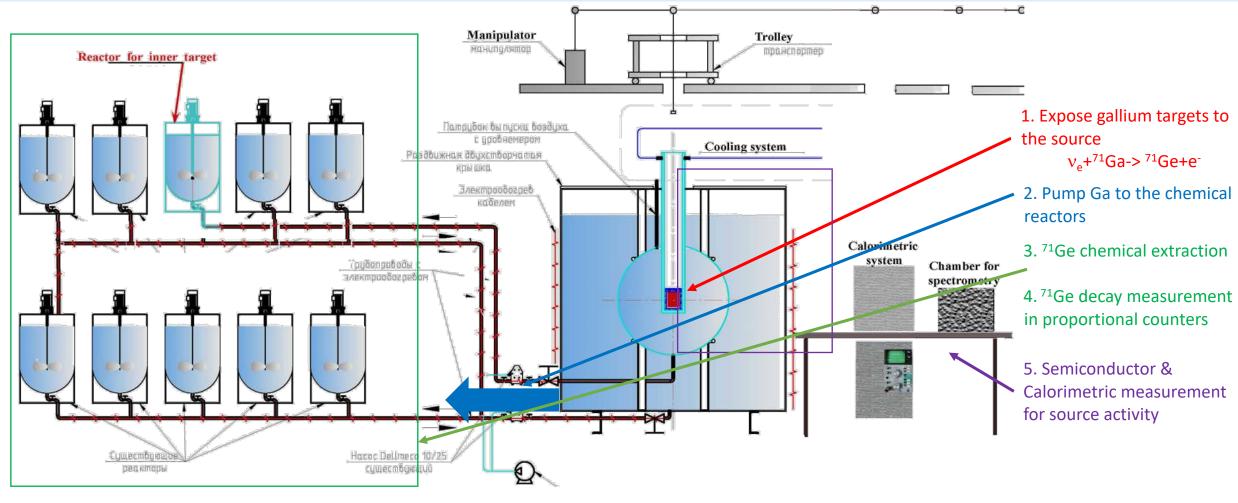

Exposures: July 5 – Oct. 13, 2019

Counting: July 16, 2019 – Mar. 20, 2020

Counter Calibration: Mar. 2020 – Jan. 2021

PRL draft posted: Sept. 2021

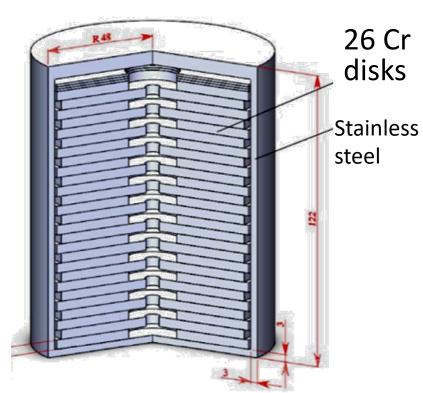
Construction started in 2011



Calorimeter

Lead chamber Source

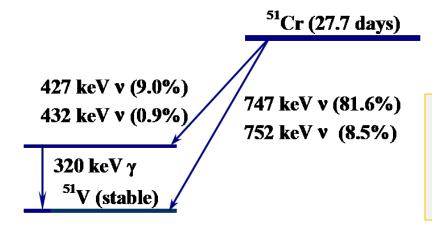
Installation and Operation



Laboratory Photo showing extraction reactors

Global intensity of muon $(3.03 \pm 0.19) \times 10^{-9} / (\text{cm}^2\text{s})$ Fast neutron flux (>3MeV) $(6.28 \pm 2.20) \times 10^{-8} / (\text{cm}^2\text{s})$

Neutrino Source



4 kg 97%-enriched 50 Cr, 26 chromium disks h = 4 mm, \emptyset 84 and 88 mm.

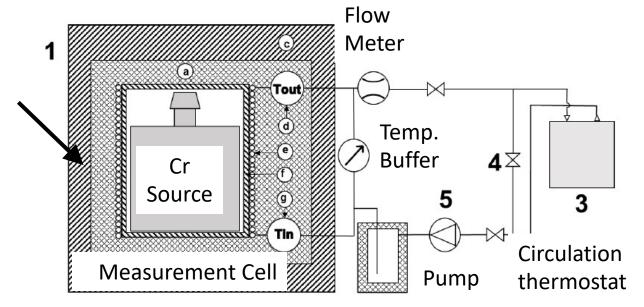
Irradiated for ~100 days with thermal neutrons in the SM-3 reactor (RIAR, Dmitrovgrad) to produce ⁵¹Cr neutrino source

Thermal neutron flux density -5×10^{15} n/(cm² s)

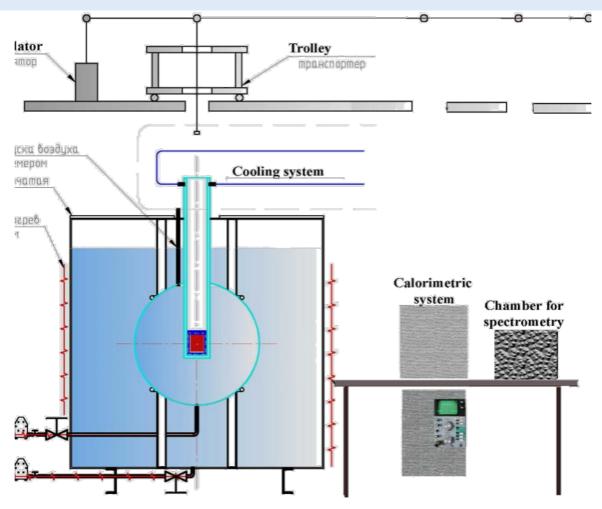
Installed at the center of the two concentric zones

Simple and very well-understood neutrino spectrum

51Cr Source (JINST 16 (2021) P04012)


Neutrino Source

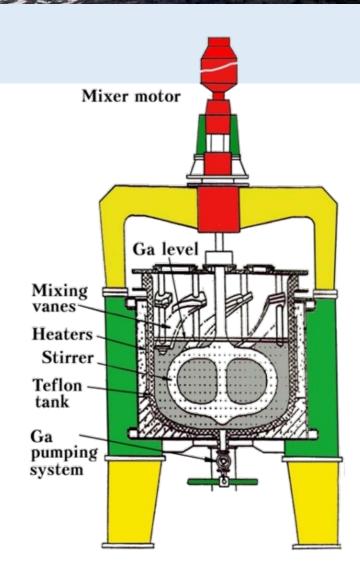
Transport Container


Activity at 14:02 on July 5, 2019 $A = 3.414 \pm 0.008$ MCi

Energy/decay = $36.750 \pm 0.84 \text{ keV}$

Measurement Cell
Of Calorimeter

Source Activity Measurements


- 1) Move the source into a lead container
- 2) Measure γ spectrum at 21.65 m with a Ge detector (1h)
- 3) Move the source into the calorimeter
- 4) Measure the heat emitted by the source (20-21 h)

Jan. 6, 2022

BEST Extraction Procedure (PRC 60 (1999) 055801)

⁷¹Ge extraction (30 hours in *total*):

- 1) Pump Ga from each zone to chemical reactors: inner zone \rightarrow 1 reactor, outer zone \rightarrow 6 reactors; (4.5 h).
- 2) In each reactor the germanium carrier, in the form of $GeCl_4$, is extracted from the metal into aqueous phase by an oxidation reaction. DI H_2O , HCl and H_2O_2 are added and stirring forms the extraction solution.
- 3) The aqueous solution is concentrated by evaporation. (16h)
- 4) The gas GeH₄ is synthesized, mixed with Xe, and placed into a proportional counter.
- 5) 71 Ge decays are counted. (60 150 days)

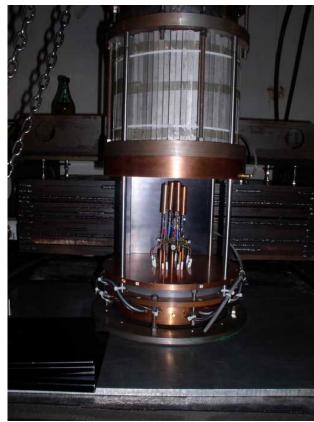
Extraction Efficiency of ⁷¹Ge and Ge Carrier

Efficiency is measured by adding a known amount of (stable) Ge and measuring the mass of extracted Ge (Int. J. Mass Spec. 392 (2015) 41)

Amount of added Ge carriers (about 175 μ g):

- 2.4 μmol ⁷²Ge (92%)
- 2.4 μmol ⁷⁶Ge (95%)

Mean extraction efficiency from Ga: 98%


Mean overall efficiency (including GeH₄ synthesis): 96%

Gas Synthesis Procedure (PRC 60 (1999) 055801)

- NaOH is added to concentrated aqueous solution to adjust pH.
- Air is swept out with a He flow.
- Low tritium NaBH₄ dissolved in H₂0 is added.
- Mixture is heated.
- The Ge is reduced by NaBH₄ to make GeH₄.
- He sweeps the GeH₄ onto a chromatography column at -196°C.
- When reaction complete, column is warmed and GeH₄ is eluted and captured.
- A measured quantity of old low-background Xe is added to make gas mixture.

Data Acquisition

- Two 8-channel systems
- PC contained within NaI well
- PC pulses digitized at 1GHz, 100 MHz bandwidth, 8 bit
- Risetime = 3.5 ns
- 0.37<E<15 keV

⁷¹Ge Decay

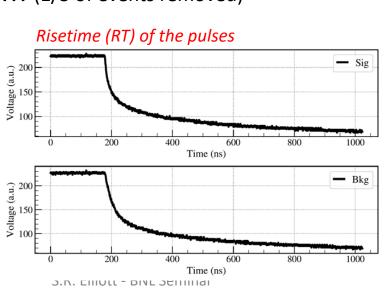
- Half-life of 11.43 d, ground state transition
- K Capture (88% of all decays)
 - 41.5% Auger e- 10.367 keV
 - 41.2% Auger e- 1.2 keV & x ray 9.2 keV
 - 5.3% Auger e- 0.12 keV & x ray 10.26 keV
- L and M capture give almost entirely Auger e-
 - L gives 1.2 keV Auger, M gives 0.12 keV Auger

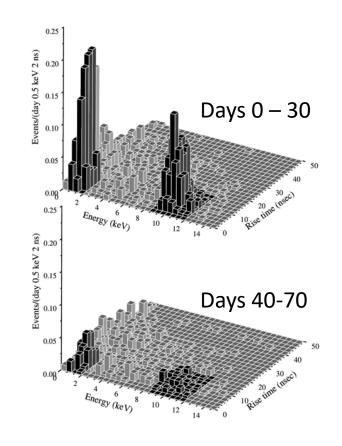
Auger decays produce point-like ionization in gas. In contrast β 's or Compton recoils might deposit a similar amount of energy, but over an extended path.

Leads to a pulse shape analysis technique to remove them. BEST fits the pulse waveform.

ADP (Cl expt.): Astrophys. J. 496 (1998) 505

Pulse fit: NIM A290 (1990) 158


11.43 d 1/2- 0 71 Ge Q_{EC}=229.4


- The proportional counter observes Auger e- with high efficiency
 - The X ray efficiency is much less
 - As a result, the number of K/L peak counts are about equal

stable ^{3/2-} 0 100% 4.3

⁷¹Ge Candidate Event Selection

- Energy calibration
- Time tagging
 - Periods of expected high background
 - Reject 2.6-hour periods after shield opening, to eliminate Rn induced backgrounds (~1.2% of the total run time)
 - Anti-coincidence with Nal system (1/3 of events removed)
- Pulse shape analysis 1.5 evts /day
 - Alpha-induced events
 - High-voltage breakdowns
 - Compton scattering
 - Beta-induced backgrounds

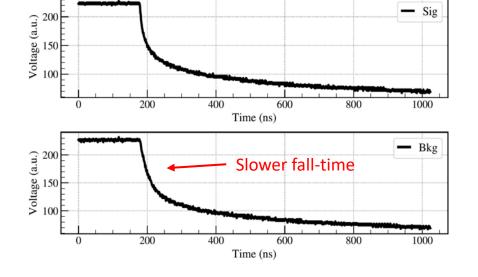
21 Jan. 6, 2022

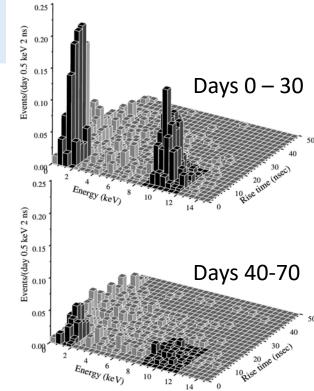
Energy Calibration

PRC **60**, (1999) 055801

$$\frac{P_K(^{71}\text{Ge})}{P(^{55}\text{Fe})} = \frac{10.367}{5.895} [1 - (4.5G + 2.78)(V - V_{\text{crit}1}) \times 10^{-6}],$$

$$\frac{R_K(^{71}\text{Ge})}{R(^{55}\text{Fe})} = \sqrt{\frac{5.895}{10.367}} [1 + 1.5 \times 10^{-3}(V - V_{\text{crit}2})],$$


$V_{\text{crit}1} =$	10.5G + 0	0.6P + 588	$V_{\text{crit2}} = 0$	6G + F	P/3 + 824
----------------------	-----------	------------	------------------------	--------	-----------


		55	Fe	L-pe			peak					K-pe	ak		
Counter				I	Positio	n	R	esoluti	on	I	Position		Re	esoluti	on
	Pos. (a.u.)	Resol.	En non-linearity factor	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio	Pred. from ⁵⁵ Fe	True	Ratio
sys2z															
YCN43	437.39	18.2	0.982	86.81	87.16	1.00	40.92	40.29	0.98	755.35	725.50	0.96	15.88	12.98	0.82
YCNA9	431.86	19.7	0.938	85.71	86.32	1.01	44.29	42.57	0.96	712.39	728.84	1.02	17.19	16.02	0.93
YCN41	442.80	18.0	0.967	87.88	87.00	0.99	40.40	37.24	0.92	753.01	732.49	0.97	15.68	13.34	0.85
YCN46	448.93	18.5	0.915	89.10	90.61	1.02	41.48	39.62	1.04	722.39	748.55	0.96	16.10	14.16	0.88
Mean sys2z						1.00			0.96			1.00			0.87
std						0.01			0.03			0.04			0.05
sys3															
YCN113	337.36	18.8	0.982	66.96	57.71	0.86	42.09	42.13	1.00	582.61	564.38	0.97	16.34	14.13	0.86
YCT92	334.67	18.9	0.964	66.42	56.72	0.85	42.40	41.88	0.99	567.37	563.97	0.99	16.46	13.90	0.84
YCT3	342.65	19.3	0.932	68.01	58.24	0.86	43.23	40.61	0.94	561.61	576.97	1.03	16.78	14.19	0.85
YCT2	337.00	18.8	0.982	66.89	57.77	0.86	42.24	41.62	0.99	581.98	563.33	0.97	16.40	14.05	0.86
YCT9	334.80	19.1	0.978	66.45	57.97	0.87	42.90	39.42	0.92	575.83	569.62	0.99	16.65	13.89	0.83
YCT97	332.81	18.6	0.932	66.05	57.11	0.86	41.64	38.75	0.93	545.48	559.25	1.03	16.16	13.51	0.84
Mean sys3						0.86			0.96			1.00			0.85
std						0.01			0.03			0.03	,	J.	0.01

- Bi-weekly calibration with ⁵⁵Fe source, 5.9 keV.
- Calibration gain and resolution scaled to K/L peaks using an empirical formula adjusting for GeH₄ fraction (G) and pressure (P).
- Energy Selection 98.1% (±1 FWHM) acceptance for K and L peaks.
- Peak position & resolution verified by separate ⁷¹Ge measurements.

Pulse Shape Analysis

- Exclude Flat-top waveforms (~1.5 events/day)
 - Alpha-induced events
 - High-voltage breakdowns
- Fit rise-time (T_N) to pulses with extended ionization formulism
 - Compton scattering
 - Beta-induced backgrounds

$$V(0 < t < T_N) = V_0 \left[\frac{t + t_0}{T_N} \ln \left(1 + \frac{t}{t_0} \right) - \frac{t}{T_N} \right],$$

$$V(t > T_N) = V_0 \left[\ln \left(1 + \frac{t - T_N}{t_0} \right) - 1 - \frac{t + t_0}{T_N} \ln \left(1 - \frac{T_N}{t + t_0} \right) \right]$$

NIM A290 (1990) 158

23

Pulse Shape Analysis

- The rise time cut values were measured for each counter used in the experiment.
 - A trace of active 71 GeH₄ was added to each counter to determine its T_N.
 - Counters filled with typical gas mixture. Efficiency accounts for pressure and GeH₄ fraction.
 - 96% acceptance window for each detector was determined (limit on T_N).

	Counter Filling							
Extraction name	Counter name	Pressure (mmHg)	GeH4 fraction (%)	Syst. Slot	K-peak	L-peak		
Inner-1	YCT92	630	8.8	3.5	17.6	13.0		
Inner-2	YCT2	640	9.5	3.2	16.6	10.1		
Inner-3	YCN43	650	9.3	Z.3	13.2	10.0		
Inner-4	YCT97	640	9.2	3.7	17.3	11.4		
Inner-5	YCN46	650	9.5	Z.8	15.2	11.3		
Inner-6	YCN42	640	9.8	3.8	13.2	9.1		
Inner-7	YCT92	640	9.3	3.5	17.6	13.0		
Inner-8	YCT2	645	9.5	3.2	16.6	10.1		
Inner-9	YCN43	640	9.1	Z.3	13.2	10.0		
Inner-10	YCT97	650	9.1	3.7	17.3	11.4		

	T_N					
Extraction name	Counter name	Pressure (mmHg)	GeH4 fraction (%)	Syst. Slot	K-peak	L-peak
Outer-1	YCN113	635	9.5	3.4	13.6	9.1
Outer-2	YCT3	635	9.5	3.1	16.4	10.3
Outer-3	YCNA9	640	10.5	Z.4	18.8	13.2
Outer-4	YCT9	635	9.6	3.6	14.9	9.1
Outer-5	YCN41	635	10.0	Z.1	13.4	10.3
Outer-6	YCT4	630	9.0	3.3	13.2	10.2
Outer-7	YCN113	630	10.3	3.4	13.6	9.1
Outer-8	YCT3	640	9.5	3.1	16.4	10.3
Outer-9	YCNA9	635	9.9	Z.4	18.8	13.2
Outer-10	YCT9	645	9.5	3.6	14.9	9.1

Likelihood Fit

Maximum likelihood fit to the t and E dependence of each candidate event

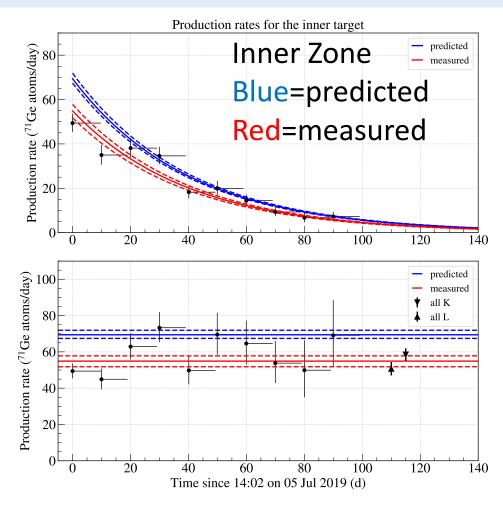
$$\mathcal{L} = e^{-p\epsilon\Delta/\lambda - b\tau} \prod_{i}^{l} \left[\frac{w_p(E_i)}{w_b(E_i)} p\epsilon e^{-\lambda t_i} + b \right]$$
 (PRC 60, 055801 (1999))

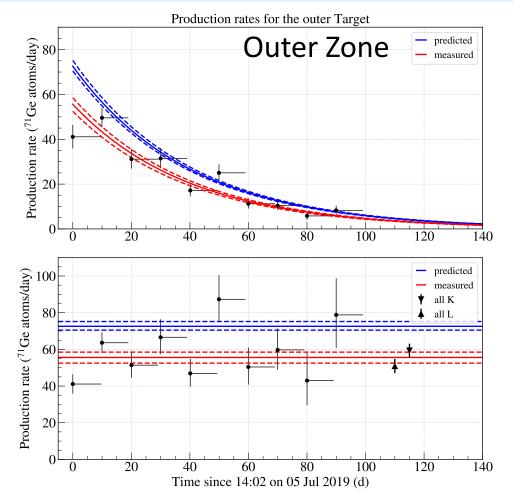
p: 71Ge production rate, 11.4-d half-life

b: background rate, constant in time

€: overall efficiency

 $w_p(E) / w_b(E)$: energy weight factors

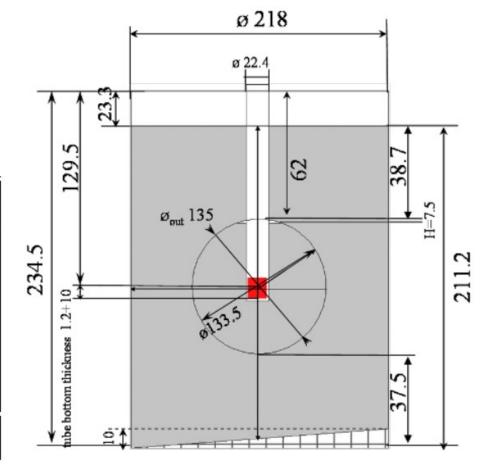

Δ: probability an event will during counting


 τ : total counting time

^{*} Weight factors are determined by examining the energy spectra for each counter

Counting Results

Predicted Production Rates

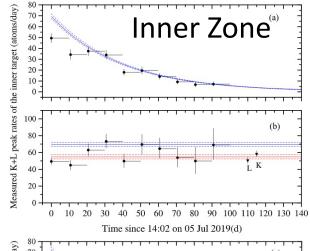

$$v_e + {^{71}\text{Ga}} \rightarrow {^{71}\text{Ge}} + e^-$$

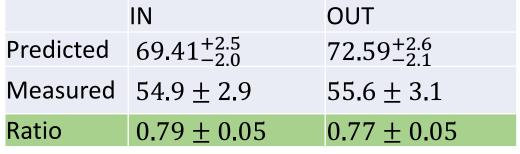
 ${^{71}\text{Ge}} + e^- \rightarrow {^{71}\text{Ga}} + v_e$

Production rates are predicted from cross section

$$P_{ee}(E_{\nu}, r) = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 [\text{eV}^2] r[\text{m}]}{E_{\nu} [\text{MeV}]} \right)$$

$$R_j = \frac{n\sigma A}{4\pi} \int_{V_j} \frac{P_{ee}(r)}{r^2} d\vec{x} \approx V_0 \frac{1}{N} \sum_{i=1}^N \frac{P_{ee}(r)}{r^2} \Theta_j(\vec{x}_i)$$


	(3	Uncert	ainty
	Value	Magnitude	%
Atomic density $D = \rho N_0 f_1/M$			
Ga density ρ (g Ga/cm ³)	6.095	0.002	0.033
Avogadro's number N_0 (10 ²³ atoms Ga/mol)	6.0221	0.0	0.0
Ga molecular weight M (g Ga/mol)	69.72307	0.00013	0.0002
Atomic density $D (10^{22} \text{ atoms}^{71} \text{Ga/cm}^3)$	2.1001	0.0008	0.037
Source activity at reference time A, MCi	3.414	0.008	0.23
Cross section σ (10 ⁴⁵ cm ² / (⁷¹ Ga atom ⁵¹ Cr decay)], Bahcall	5.81	+0.21, -0.16	+3.6, -2.8
Path length in Ga $< L_{in} > (cm)$	52.03	0.18	0.3
Path length in $Ga < L_{out} > (cm)$	54.41	0.18	0.3
Predicted production rate (71Ge atoms/d), R _{In}	69.41	+2.5, -2.0	+3.6, -2.8
Predicted production rate (⁷¹ Ge atoms/d), R _{Out}	72.59	+2.6, -2.1	+3.6, -2.8



Predicted vs. Measured Production Rates

K+L-peak

K+L-peak						
Extraction	Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production		Carryover	⁷¹ Ge Production decay rate (atoms/day)
Inner-1	180	176.3	175.5	0.8	0.0	$49.4^{+4.0}_{-4.2}$
Inner-2	129	111.5	107.7	0.8	3.1	$44.9^{+5.6}_{-5.9}$
Inner-3	132	117.6	115.3	0.7	1.6	$62.9^{+7.1}_{-7.4}$
Inner-4	93	87.3	85.6	0.6	1.1	$73.3^{+8.0}_{-8.6}$
Inner-5	134	60.2	58.4	0.6	1.2	$49.8^{+7.7}_{-8.2}$
Inner-6	81	48.8	47.7	0.4	0.7	$69.5^{+11.0}_{-12.0}$
Inner-7	91	45.0	43.9	0.5	0.6	$64.6^{+11.6}_{-12.6}$
Inner-8	59	33.6	32.4	0.6	0.6	$53.8^{+11.0}_{-12.2}$
Inner-9	106	23.7	22.7	0.6	0.4	$49.9^{+14.9}_{-16.5}$
Inner-10	88	25.2	24.3	0.6	0.3	$69.1^{+17.3}_{-19.4}$
Comb. K+L	1093	724.0	708.2	6.1	9.7	$54.9^{+2.4}_{-2.5}$
	•		•	•		

+L-peak

Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production	Solar ν production	Carryover	⁷¹ Ge Production decay rate (atoms/day)
181	133.4	129.6	3.7	0.1	$41.1^{+5.2}_{-5.3}$
174	163.8	158.6	3.3	1.9	$63.6^{+5.5}_{-5.7}$
116	92.5	88.2	2.8	1.5	$51.4^{+6.9}_{-7.3}$
98	82.3	78.9	2.5	0.8	$66.6^{+9.2}_{-9.8}$
120	64.0	59.5	3.5	1.0	$46.9^{+7.2}_{-7.9}$
97	62.3	59.3	2.6	0.4	$87.3^{+12.3}_{-13.2}$
69	38.0	34.4	3.2	0.4	$50.4^{+9.6}_{-10.6}$
68	43.4	39.2	3.9	0.4	$59.7^{+10.8}_{-11.7}$
66	20.2	17.0	3.0	0.2	$43.0^{+13.5}_{-15.3}$
81	31.8	28.0	3.6	0.2	$78.8^{+18.1}_{-20.0}$
1069	738.8	699.8	32.2	6.8	$55.6^{+2.6}_{-2.7}$
	events 181 174 116 98 120 97 69 68 66 81	events 71 Ge 181 133.4 174 163.8 116 92.5 98 82.3 120 64.0 97 62.3 69 38.0 68 43.4 66 20.2 81 31.8	events 71 Ge production 181 133.4 129.6 174 163.8 158.6 116 92.5 88.2 98 82.3 78.9 120 64.0 59.5 97 62.3 59.3 69 38.0 34.4 68 43.4 39.2 66 20.2 17.0 81 31.8 28.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	events 71Ge production production production 181 133.4 129.6 3.7 0.1 174 163.8 158.6 3.3 1.9 116 92.5 88.2 2.8 1.5 98 82.3 78.9 2.5 0.8 120 64.0 59.5 3.5 1.0 97 62.3 59.3 2.6 0.4 69 38.0 34.4 3.2 0.4 68 43.4 39.2 3.9 0.4 66 20.2 17.0 3.0 0.2 81 31.8 28.0 3.6 0.2

NI - 4	$\frac{0.77 \pm 0.05}{0.79 \pm 0.05}$	- 0 07 -	+ ∩ ∩7
note:	0.79 ± 0.05	— U.97 _	<u>ı</u> 0.07

Similar deficits observed in both zones

 4.2σ and 4.8σ less than the unity

Oscillation Interpretation

Exclusion curves are calculated by a global minimization of χ^2 :

$$\chi^2(\Delta m^2, \sin^2 2\theta) = (\mathbf{R}^{\text{meas.}} - \mathbf{R}^{\text{calc.}})^{\text{T}} \mathbf{V}^{-1} (\mathbf{R}^{\text{meas.}} - \mathbf{R}^{\text{calc.}})$$

R^{meas.}: vector of measured rates

 $R^{\text{calc.}}$: vector of calculated rates with

 $R_i^{\text{calc.}}(\Delta m^2, \sin^2 2\theta)$

V: covariance matrix

❖ For the Ga source experiments, the cross section uncertainties are the only significant contribution to the correlated uncertainty.

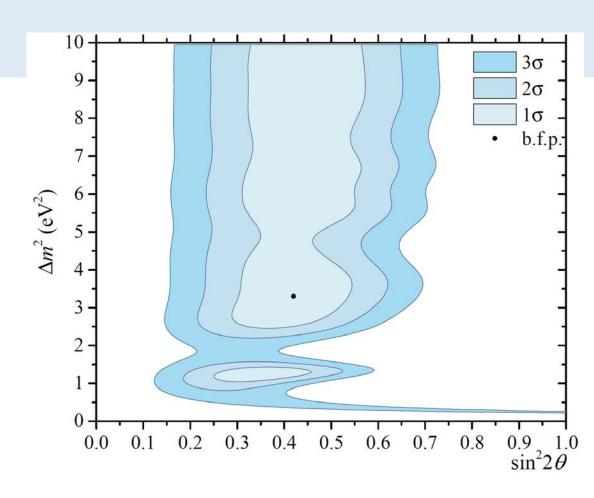
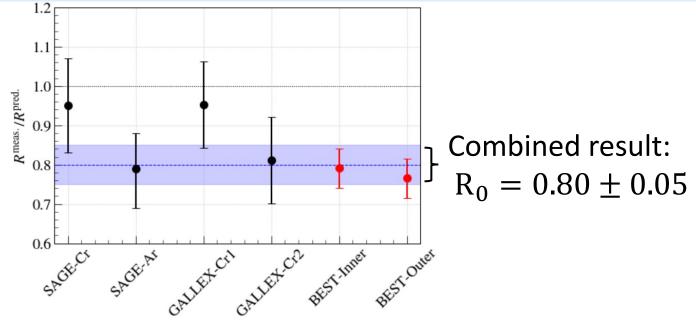



FIG. 7. Allowed regions for two BEST results. The best-fit point is $\sin^2 2\theta = 0.42$, $\Delta m^2 = 3.3 \text{ eV}^2$ and is indicated by a point.

Combined Analysis with Other Ga Source Experiments

Experiment	Measured/Predicted	Ref.
SAGE-Cr	0.95 ± 0.12	PRC 59 , 2246 (1999)
SAGE-Ar	$0.79^{+0.09}_{-0.10}$	PRC 73 , 045805 (2006)
GALLEX-Cr1	0.95 ± 0.11	PLB 420 , 114 (1998)
GALLEX-Cr1	0.81 ± 0.11	PLB 420 , 114 (1998)
BEST-Inner	0.791 ± 0.05	arXiv:2109.11482
BEST-Inner	0.766 ± 0.05	arXiv:2109.11482

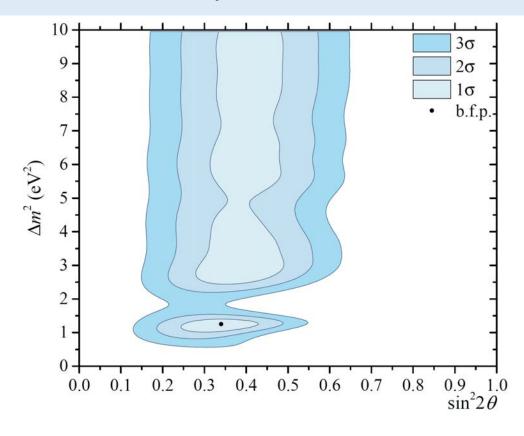
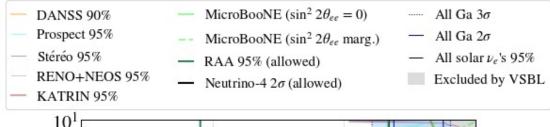
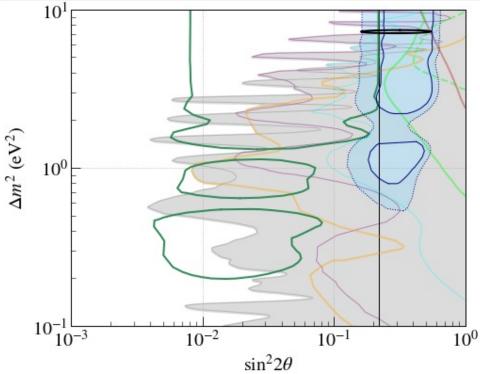




FIG. 8. Allowed regions for two GALLEX, two SAGE and two BEST results. The best-fit point is $\sin^2 2\theta = 0.33$, $\Delta m^2 = 1.25$ eV² and is indicated by a point.

Comparison to Other Oscillation Results

Clear tension between the numerous results.

BEST Best-fit point $\Delta m^2 = 1.25$ $\sin^2 2\theta = 0.34$

DANSS: Int. J. Mod. Phys. A **35**, 2044015 (2020) Prospect: PRD **103**,032001 (2021)

Stereo: PRD **102**, 052002 (2020) RENO+NEOS: arXiv:2011.00896 (2020) KATRIN: PRL **126**, 091803 (2021) MicroBooNE: arXiv:2111.10359 RAA: PRD **83**, 073006 (2011)

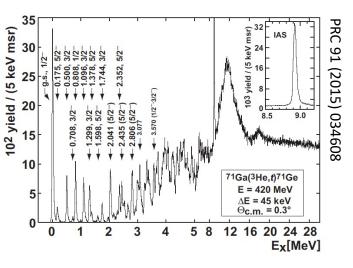
Neutrino-4: JETP Lett. **112**, 199 (2020) Model indep. solar: PLB **816**, 136214 (2021)

Consistent with, but not Proof of, Oscillations

These results reaffirm the Ga anomaly, with higher statistical precision.

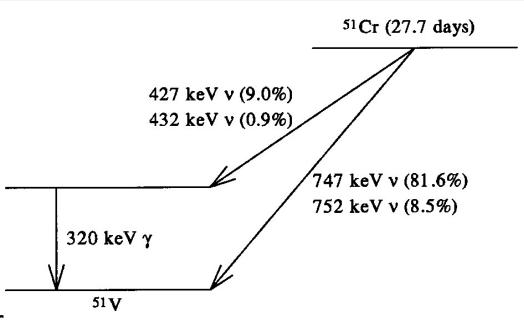
But no dependence on oscillation length was observed. So although the results are consistent with oscillations, there is no 'smoking gun' evidence that is not subject to caveats.

Because the rate in the two volumes is equally depressed, a number of potential explanations beyond oscillations have been considered. No clear alternative has been identified.


- Cross Section
- Source Strength
- Extraction Efficiencies
- Counting Efficiencies
- Average Path Length

The Cross Section

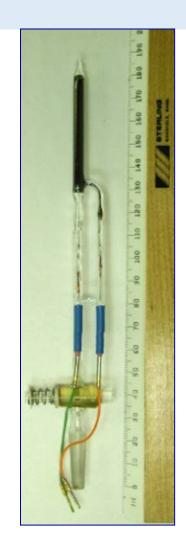
- Bahcall estimated the ground state cross section by deriving the transition strength from the well-known ⁷¹Ge decay rate. (PRC 56 (1997) 3391)
 - The excited states (ES) were estimated from imprecise charge exchange measurements and found to be \sim 5%.
- Recently much better charge exchange measurements have become available. (PLB 706 (2011) 134, PLB 722 (2013) 233, PRC 91 (2015) 034608)
 - Show that the ES contribution is about 7%.
 - But, the Gamow-Teller and tensor contributions might cancel. (PLB 431 (1998) 110)
- New shell model calculations avoid the GT-tensor concern, but must reproduce other low energy characteristics. (PLB 795 (2019) 542)
 - This agreement is modest and not fully reassuring.
 - New shell model work is desirable.
- Bahcall's result is at the average of the two methods with an uncertainty that encompasses both, so BEST uses that value. 5.81x10⁻⁴⁵ cm²

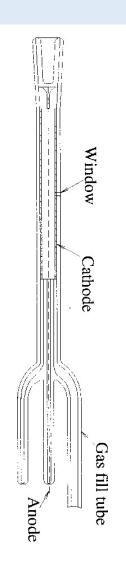

⁵¹Cr and ³⁷Ar ν's can only excite first 3 levels in ⁷¹Ge.

Source Strength

- The activity measurement precision is best from calorimetry.
- This technique has been confirmed by other estimates building confidence. (PRC 59 (1999) 2246)
 - Direct counting of 320-keV line with Ge detector.
 - Reactor physics and neutron transport.
- Cr decay scheme.
 - The branching ratio to the 320-keV level is key for interpreting the activity of the source.
 - It is claimed to be known to ~0.1%, too small to explain 20% depression.

S.R. Elliott - BNL Seminar

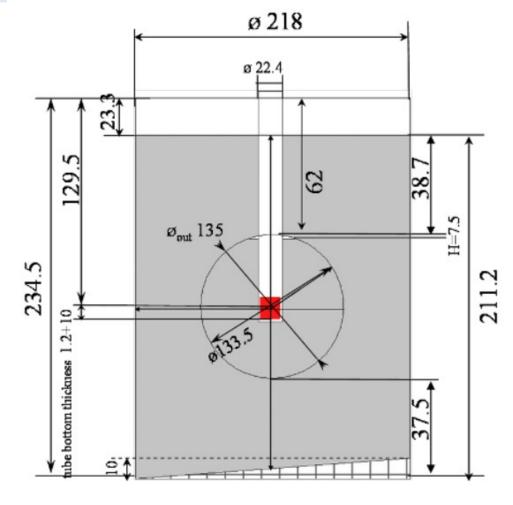



SAGE Extraction Efficiencies (PRC 73 (2006) 045805)

- A variety of extraction efficiency tests have been done all consistent with experimental values. (PRC 60 (1999) 055801)
- ^{70,72}Ga radioactive isotopes produced by neutron activation were used for the carrier. Extraction of the Ge isotopes resulting from their decay was as expected. Tests question that atomic excitations during nuclear processes result in Ge ending up in un-extractable chemical form.
- ⁶⁸Ge produced cosmogenically when the Ga resided on surface was counted during many initial extractions. The reduction during these extractions followed the expected trend.
- A sample of carrier doped with ⁷¹Ge was produced and the measured extraction efficiency was as expected from the stable carrier determination.

Counting Efficiencies (PRC 60 (1999) 055801)

- Counter efficiencies were cross checked several ways.
- Volume efficiency checked with ³⁷Ar loaded counter gas
 - ⁴⁰Ca(n,a)³⁷Ar
 - Gas activity measured in a large counter (2.5 cm³) with high efficiency
 - Then used in experiment's counters to determine efficiency
- L- & K-Peak Efficiencies with ⁶⁹Ge and ⁷¹Ge loaded counter gas
 - ⁶⁹Ga(p,n)⁶⁹Ge
 - 69 GeH₄-Xe fill, measure Auger e⁻ and 1106 γ ray. The relative rates of γ /e determines efficiency.
 - ⁷⁰Ge(n,g)⁷¹Ge
 - ⁷¹GeH₄-Xe fill, measure in both large and experimental counters


Average Path Length and Geometry

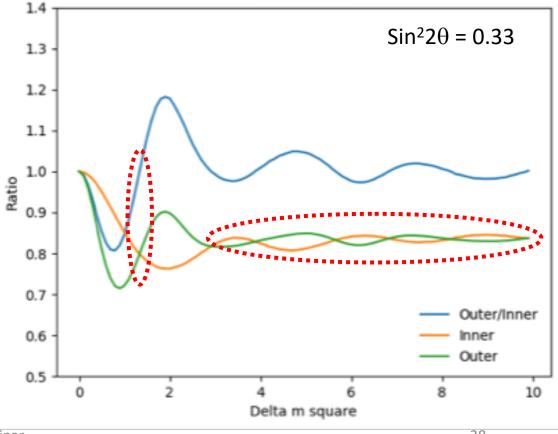
$$R_j = \frac{n\sigma A}{4\pi} \int_{V_j} \frac{P_{ee}(r)}{r^2} d\vec{x} \approx V_0 \frac{1}{N} \sum_{i=1}^N \frac{P_{ee}(r)}{r^2} \Theta_j(\vec{x}_i)$$

Due to irregular geometry, calculated by Monte Carlo Integration. Verified by comparing calculated Ga masses to measured. Uncertainty estimated by varying geometry parameters. Uncertainty about 0.3%.

$$= 52.03 \pm 0.18 \text{ cm}$$

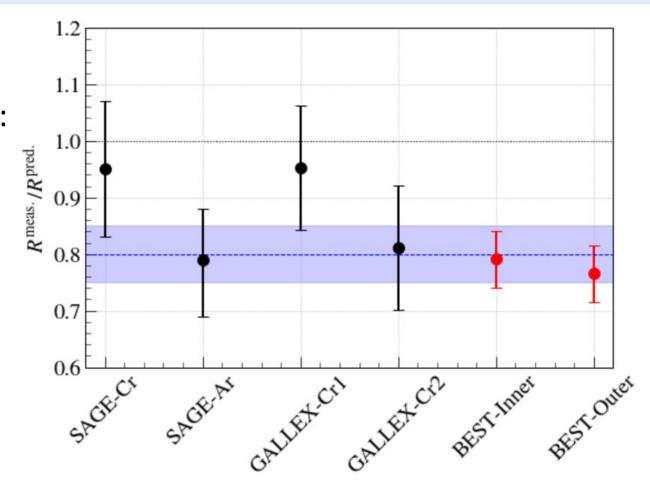
 $= 54.41 \pm 0.18 \text{ cm}$

These are the average path length of a neutrino through the Gazone. It is <u>not</u> the oscillation length.

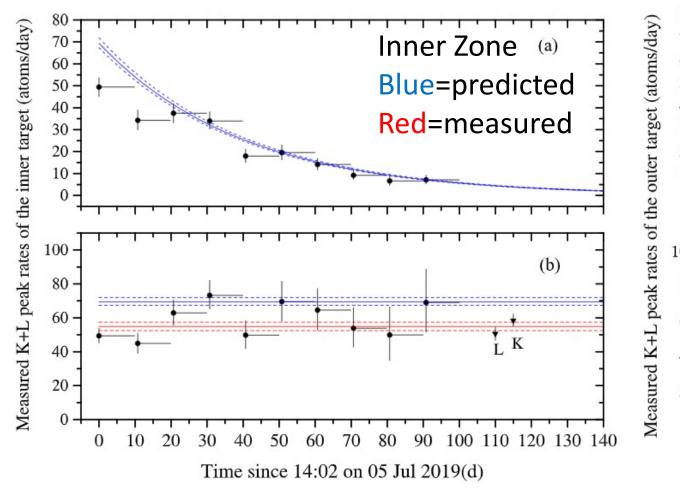


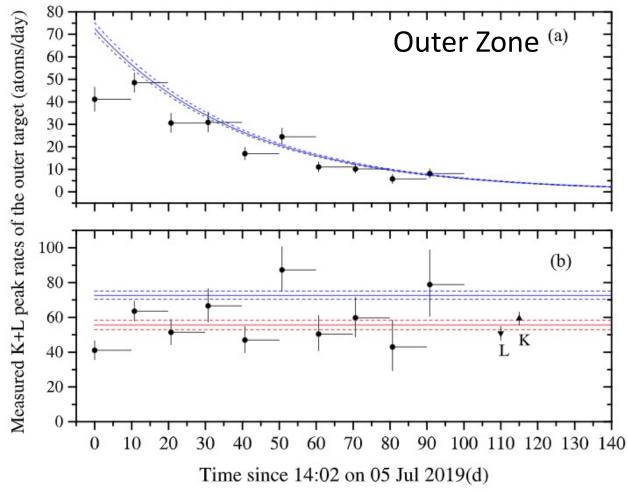
Possible Future Plans

If oscillations, the oscillation length is short (large Δm^2). BEST has poor Δm^2 resolution for values greater than ~2 eV².


- Smaller inner volume probably not feasible.
 - Half the volume, need 8x the source strength for same rate.
- 65Zn Source (PRD 97 (2018) 073001)
 - Higher energy source (1.35 MeV vs. 0.75 MeV).
 - Almost twice the cross section.
 - But adds a couple additional excited states.
 - 6-7 kg of enriched ⁶⁴Zn to produce 0.5 MCi.
 - About 9x longer half life (244 d), many more events even with lower activity.

Regions where inner/outer both about 0.8 of expectation


Summary: see arXiv:2109.11482


- BEST measured the ⁷¹Ge production in Ga from neutrinos emitted by ⁵¹Cr at two distances (inner zone: ~40 cm, outer zone: ~96 cm, but both have large spread.)
- The ratio of the measured-to-predicted rates in both the inner and outer zones are depressed by about 20% from unity. The ratio-of-ratios is ~1.
- The Ga Anomaly is reaffirmed.
- No dependence on oscillation length was observed.

Backups

Jan. 6, 2022

S.R. Elliott - BNL Seminar

Q-Value Measurements

$$\sigma(^{51}Cr) = \sigma_0(^{51}Cr) \left[1 + 0.67 \frac{B_1(GT)}{B_0(GT)} + 0.22 \frac{B_2(GT)}{B_0(GT)} \right]$$

$$\downarrow$$

$$\sigma_0(^{51}Cr) = F(atom) \frac{1}{ft}$$

$$\downarrow$$

$$ft \propto Q_{EC}^2 \cdot t$$

Penning trap Q-value determination of the ⁷¹Ga(v,e⁻)⁷¹Ge reaction.

First direct Q-value measurement of the ⁷¹Ga(v,e⁻)⁷¹Ge reaction was carried out in a Penning trap using the TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) mass-measurement facility at ISAC/TRIUMF.

Q-value obtained from combined results of the two independent mass-measurement methods is 233.7±1.2 keV, which is in agreement with the previously accepted Q-value for the v cross-section calculations.

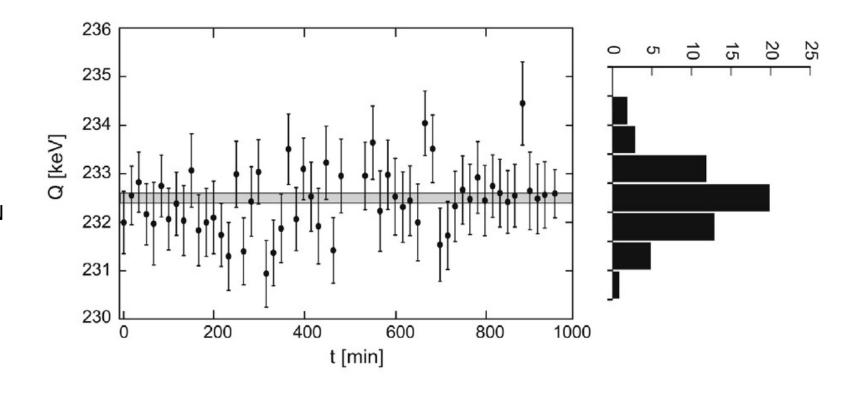
The TITAN result excludes an incorrect Q-value as a cause for the gallium anomaly observed in the GALLEX and SAGE calibration runs.

225(12) [a] 237(5) 231(3) 1955 235.7(1.8) [d] Hampel and Schlotz ((1984) 229.2(+0.6-0.5) [e] 1991 229.4(0.7) AME 93 231.9(0.3) AME 95 1995 232.7(+0.2-0.1) [g] 232.5(0.2) AME 03 232.7(0.15) used by J. N. Bahcall, Phys. Rev. C 56, 3391 (1997) combined **TITAN 2011** 233.7(1.2) 232.76(0.3)(1.53) mono-beam 234.98(0.71)(1.85) mixed beam 226 232 228 230 234 236 238 224

Q-value [keV]

42

Comparison of previous Q-value measurements


The TITAN Beamline

Buncher & Cooler

Most Recent Q-Value measurement (Int. J. Mass Spec. 406 (2016) 1)

Result 232.443 ± 0.093 ±0.04%

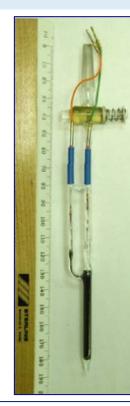
Claims uncontrolled systematic uncertainties were present in TITAN measurements.

Work on creation of the two-zone reactor for the BEST Ga target

In August-September 2015, two solar measurements were carried out from the BEST gallium target. Extractions and counting of ⁷¹Ge atoms were performed independently for each zone.

The result of the analysis of these measurements is **66.4**^{+28.1}_{-24.3} SNU, agrees with the result of the period of measurements 1990 to 2014, **64.6** \pm **2.4** SNU (with statistical uncertainty only).

Exposure and Extraction


		Source e	xposure			extraction	Massa	assa Extraction efficiency Extraction Massa				Massa	Extraction efficience	
	Е	Begin		End	from cy	lindrical target	Ga	L/Xtl detion	Circicitey	from s	pherical target	Ga	L/M delion	cirrerency
									into					into
Dayy	ear :	Mo Da Hr Mn	Dayyear	Mo Da Hr Mn	Name	Date (2019)	(tons)	from Ga	GeH4	Name	Date (2019)	(tons)	from Ga	GeH4
186.5	585	07.05 14:02	196.376	07.15 09:02	Cr1	15 Jul 13:59	40.09	0.97	0.91	Cr11	15 Jul 16:01	7.4	0.98	0.93
197.3	362	07.16 08:41	206.372	07.25 08:56	Cr2	25 Jul 13:51	40.09	0.97	0.92	Cr21	25 Jul 16:32	7.4	0.97	0.92
207.2	282	07.26 06:47	216.374	08.04 08:59	Cr3	04 Aug 12:47	40.09	0.98	0.97	Cr31	04 Aug 16:37	7.4	0.97	0.92
217.2	286	08.05 06:52	226.371	08.14 08:54	Cr4	14 Aug 12:51	40.09	0.98	0.94	Cr41	14 Aug 15:35	7.4	0.97	0.92
227.2	258	08.15 06:12	236.458	08.24 11:00	Cr5	24 Aug 14:35	40.09	1.00	0.97	Cr51	24 Aug 17:17	7.4	0.99	0.96
237.3	342	08.25 08:13	246.37	09.03 08:51	Cr6	03 Sep 12:35	40.09	1.00	0.98	Cr61	03 Sep 15:18	7.4	1.00	1.00
247.2	243	09.04 05:50	256.368	09.13 08:50	Cr7	13 Sep 12:29	40.09	1.00	1.00	Cr71	13 Sep 15:11	7.4	1.00	1.00
257.2	241	09.14 05:47	266.37	09.23 08:52	Cr8	23 Sep 12:32	40.09	1.00	1.00	Cr81	23 Sep 15:17	7.4	1.00	1.00
267.2	240	09.24 05:46	276.369	10.03 08:51	Cr9	03 Oct 12:27	40.09	0.95	0.88	Cr91	03 Oct 15:00	7.4	0.97	0.92
277.2	200	10.04 04:49	286.367	10.13 08:48	Cr10	13 Oct 12:26	40.09	0.99	0.95	Cr101	13 Oct 14:59	7.4	0.99	0.94

Source exposure of the two concentric zones

- 10 exposures
- Mean exposure time: 9.18 d
- Masses: 7.4 t (inner) / 40.09 t (outer)

Chemical extraction of ⁷¹Ge

- Efficiency is measured by adding a known amount of (inactive) Ge and measuring the mass of extracted Ge
- Amount of added Ge carriers:
 - 2.4 μmol ⁷²Ge (92%); 2.4 μmol ⁷⁶Ge (95%)
- Mean extraction efficiency from Ga: 98%
- Mean overall efficiency (incl. GeH₄ synthesis): 96%

The extracted Ge activity is measured using proportional counters

Systematic Uncertainties

Parameter	Value	Uncertainty
Ga Density ρ (g/cm ³)	6.095	± 0.002
Avogadro's Number N_A (10 ²³ atoms Ga/mol)	6.0221	negiligible
Ga molecular weight M (g Ga/mol)	69.72307	± 0.00013
71 Ga isotopic abundance f (%)	39.8921	± 0.0062
Atomic Den. $n = \rho N_A f/M \ (10^{22} \text{ atoms}^{71} \text{Ga/cm}^3)$	2.1001	± 0.0008
Source Activity at Ref. Time A (MCi)	3.414	± 0.008
Average Path Length Inner Vol. L_{in} (cm)	52.03	± 0.18
Average Path Length Outer Vol. L_{out} (cm)	54.41	± 0.18
Cross section $\sigma (10^{-45} \text{ cm}^2)$	5.81	+0.21, -0.16

Origin of uncertainty	Uncertainty (%)
Chemical extraction efficiency	
Efficiency of extraction from Ga metal	±1.0
Efficiency of synthesized into GeH ₄	±1.3
Carrier carryover	-
Mass of gallium	-
Chemical extraction subtotal	±1.6
Counting efficiency	
Calculated efficiency	
Volume efficiency	-1.3, +1.5
Peak efficiency	±1.1
Simulations to adjust for counter filling, Monte Carlo interpolation	±0.6
Calibration statistics	
Centroid	±0.1
Resolution	± 0.3
Rise time cut	-
Gain variations	+0.4
Counting efficiency subtotal	-1.5 +1.7
Residual radon after time cuts	-0.05
Solar neutrino background	±0.20
⁷¹ Ge carryover	± 0.04
Subtotal	± 0.22
Energy weihting in analysis	± 0.15
Total systematic uncertainty	-2.5 +2.6

GALLEX Extraction Efficiency Test (Phys. Lett. B436 (1998) 158)

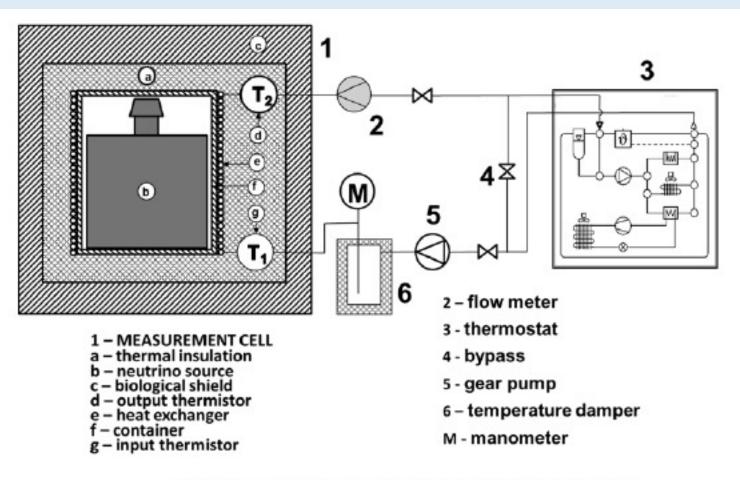
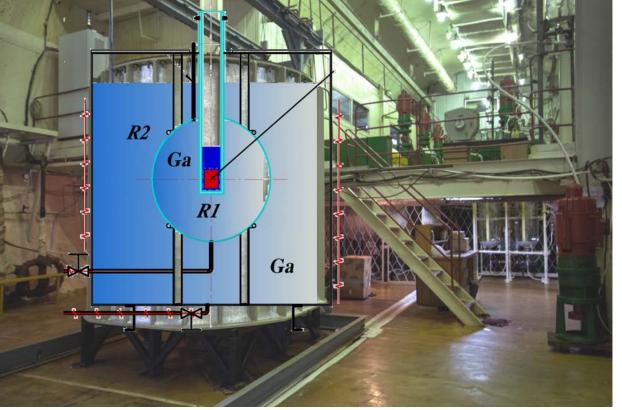
- GALLEX also did a variety of extraction efficiency tests have been done all consistent with experimental values.
- A known amount of 71 As was added to the Ga. The 71 As (2.72 d) decays to 71 Ge, which is then extracted and counted. The extraction was 100±1% validating the procedures.
- Rules out 'hot atom' effects.

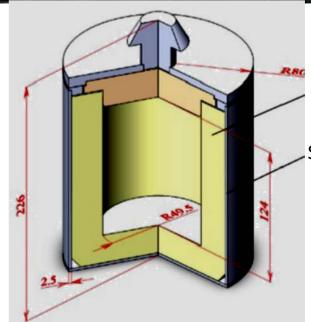
⁵¹Cr Energy Release per Decay (J. Phys.: Conf. Ser. 798 (2017) 012140)</sup>

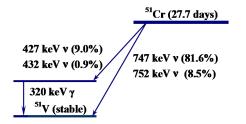
Table 1. The total energy release with Cr-51 decay.

Type of energy release	Energy, keV	Contribution to 51Cr decay	Energy release with 51Cr decay, keV
Gamma rays	320.0835 (4)	0.0991(2)	31.720 (64)
K-capture	5.465	0.8919 (17)	4.874 (9)
L-capture	0.628	0.0927 (14)	0.0582 (9)
M-capture	0.067	0.0154	0.001
inner bremsstrahlung	751 (max)	3.8×10 ⁻⁴ ×0.902 (±10%)	0.096(10)
inner bremsstrahlung	430 (max)	1.2×10 ⁻⁴ ×0.0983 (±10%)	0.001
Total			36.750 (84) 0.23%

The Calorimeter

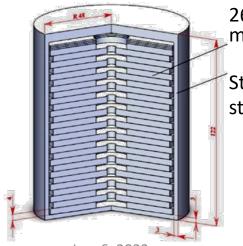




Figure 1. Hydraulic circuit of the mass flow calorimeter.



Biological protection, tangsten

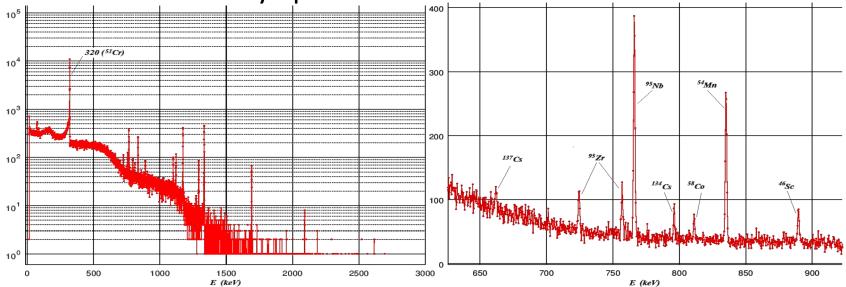
Stainless steel


BEST: Neutrino source

4 kg 97%-enriched 50 Cr, 26 Cr metal disks h = 4 mm, \varnothing 84 and 88 mm.

26 chrome metal disks

Stainless steel Chromium disks from metallic ⁵⁰Cr enriched up to 97%.


The enrichment was performed by the JSC "PA "Electrochemical Plant" (Zelenogorsk). These disks were irradiated for ~100 days with thermal neutrons in the SM-3 reactor

(RIAR, Dmitrovgrad). Thermal neutron flux density – 5×10^{15} neutrons /(cm² s)

Gamma Ray Spectroscopy of Source

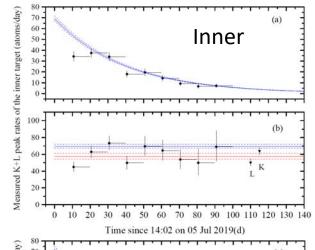
Measured nuclide impurities in the ⁵¹Cr source and their contribution to the source activity measurement at the reference time 14:02 on 05.07.2019

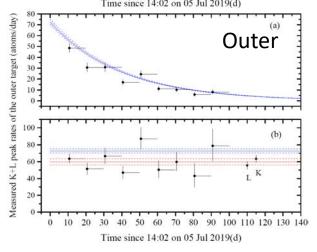
Source Gamma Ray Spectrum

	-				
	Isotope, T _{1/2}	energy in the line, keV	output lines, %	Activity on July 5, mCi	W, mW
1	¹³⁷ Cs, 30.05 y	662	85	8.5×(1±0.23)	0.06
2	⁹⁵ Zr, 64 d	724	11.1	60×(1±0.12)	2.1
		757	54.38		
3	⁹⁵ Nb, 35 d	766	99.8	87×(1±0.04)	
4	¹³⁴ Cs, 2.06 y	796	85.5	3.3×(1±0.18)	0.04
5	⁵⁸ Co, 70.85d	811	99.44	6.0×(1±0.27)	0.08
6	⁵⁴ Mn, 312 d	835	100	13×(1±0.05)	0.1
7	⁴⁶ Sc, 83.8 d	889	100	5.2×(1±0.10)	0.07
		1120	100		
8	⁵⁹ Fe, 44.5 d	1099	57	23×(1±0.07)	0.22
		1291	43.2		
9	⁶⁰ Co, 5.27 y	1173	100	6.6×(1±0.03)	0.11
		1332	100		
10	¹²⁴ Sb, 60.2 d	1690	47.5	5.8×(1±0.06)	0.1
		2091	5.5		
11	¹⁵⁴ Eu (?), 8.6 y	1274	34.9	0.86×(1±0.18)	0.01
		1595	1.8		
Σ					2.9

From 11 spectrometric measurements of gamma radiation of the source,

- the total amount of heat release from impurity radionuclides is 2.9 ± 0.5 mW, which is $^{\sim}4\cdot10^{-6}$ of the initial 51 Cr source power, and can be neglected; confirmation of a high purity of the material used to produce the 51 Cr source


Pulse Shape Analysis


• 96% acceptance window were verified by separate ⁷¹Ge measurements

Counter	Num. Ev.	L-peak	Num. Ev	ratio	Num. Ev.	K-peak	Num. Ev	ratio
Counter	L- all	T_N cut	L- selected	ratio	k- all	T_N cut	k- selected	ratio
sys2z			77.11.07.77		CENTRE	517.31.72	12176.81	
YCN43	495	10	463	0.94	489	13.2	468	0.96
YCNA9	1281	13.2	1244	0.97	1167	18.8	1142	0.98
YCN41	1353	10.3	1299	0.96	1434	13.4	1374	0.96
YCN46	941	11.3	897	0.95	865	15.2	837	0.97
mean 2z				0.95				0.97
std				0.01				0.01
sys3						96		
YCN113	1643	9.1	1626	0.99	1488	13.6	1426	0.96
YCT92	265	13.0	250	0.94	243	17.6	237	0.98
YCT4	508	10.2	497	0.98	328	13.2	313	0.95
YCT3	314	10.3	297	0.95	258	16.4	252	0.98
YCT2	1475	10.1	1415	0.96	1483	16.6	1427	0.96
YCT9	397	9.1	388	0.98	341	14.9	322	0.94
YCT97	1622	11.4	1551	0.96	1607	17.3	1562	0.97
mean sys3				0.96				0.96
std				0.02				0.02

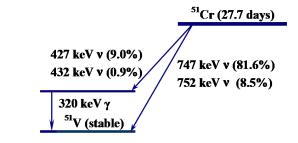
Fit Excluding First Extraction

A fit that excludes the first data point does not change the qualitative conclusion although the statistical significance is decreased.

	IN	OUT
Predicted	$69.41^{+2.5}_{-2.0}$	$72.59^{+2.6}_{-2.1}$
Measured	57.7 ± 3.5	59.8 ± 3.6
Ratio	0.83 ± 0.05	0.82 ± 0.06

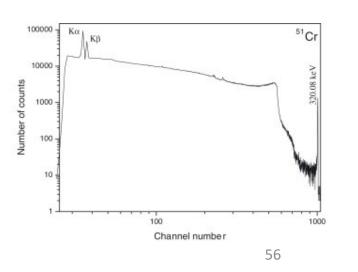
 2.9σ and 3.2σ less than the unity

Note:
$$\frac{0.83\pm0.05}{0.82\pm0.06} = 0.99 \pm 0.08$$


Similar deficits observed in both zones

Source Activity – ⁵¹Cr Branching Ratio Uncertainty

The calorimetry heat measurement relies on the branching ratio of the 320-keV Cr emission to normalize to activity. If the branching value is in error, so would be the source strength. But the BR is claimed to be known to a precision much smaller than our result, 0.1%. Even so, would not explain Ar result.


ENDF data

E(decay)	E(level)	$I_{\varepsilon^{\dagger \ddagger}}$	Log ft	Comments
(432.37 <i>21</i>) (752.45 <i>21</i>)	320.0835 0.0			ε K=0.8910; ε L=0.09347; ε M+=0.01556 ε K=0.8919; ε L=0.09268; ε M+=0.01541

Specific Results

Ref	branch	method
Nucl. Phys. A423 (1984) 121	0.1030(19)	Counting neutrons and gamma rays in (p,n)
NIM A 339 (1994) 20	0.0990(8)	Nal – absolute activity ???
NIM A 339 (1994) 20	0.1008(11)	Ge – absolute activity ???
Applied Radiation and Isotopes 68 (2010) 596	0.0987(3)	Beta-gamma coincidence (Ge-based)
Applied Radiation and Isotopes 62 (2005) 63	0.099(1)	Si(Li) with fixed activity

Cross Section – Energy of ⁵¹Cr Neutrinos

- Cross section scales approximately as neutrino energy squared.
- Q value is well known: 0.1%. So no more than about 0.2% on cross section
- The energies of the emitted neutrinos are taken from the decay Q value and specific K/L shell energies.
- A full calculation of the final atomic state should be pursued. If the shell is altered during the decay, the energy of that state will not be shared with the neutrino.
- Maybe a keV decrease in neutrino energy...
 - 1 keV out of 750 is about 1.3%, cross section might decrease by maybe 2.5%.
 - Too small to explain difference.
- Would have to do similar calculation for Ar.

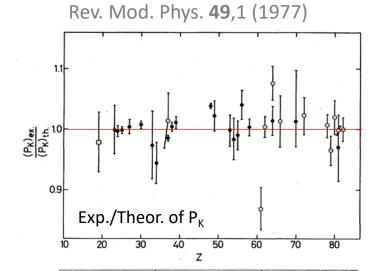
Cross Section – Electron Density at the Nucleus

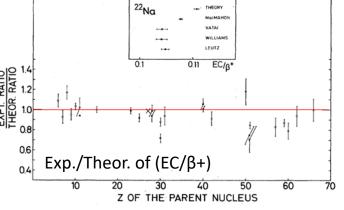
Concern raised by RGH Robertson

- The ground state cross section for 71 Ga-> 71 Ge is derived from the decay rate of 71 Ge.
- The decay rate is proportional to $|M|^2|\psi(0)|^2$, where $\psi(0)$ is the electron density at the nucleus. If the theoretical $\psi(0)$ is estimated high, the cross section would be underestimated.
- The cross section, however, only needs the matrix element $|M|^2$.
- Hence a calculation of $\psi(0)$ is used to convert the decay rate to a cross section.
- Experimental tests of $\psi(0)$ measure the ratio of electron capture to positron decay.
 - For ²²Na, measurement is ±1%, but disagrees with theory by 6%. (Appl. Rad. Iso. 134 (2018) 225)
 - But theory is high wrt experiment, so effect seems to be in wrong direction to be an explanation.
 - Need a better experimental test, and hopefully with A near 71 (68Ga?)
 - Will need complementary calculations.

Cross Section – Electron Density at the Nucleus

Concern raised by RGH Robertson


• The ground state cross section for ⁷¹Ga-> ⁷¹Ge is derived from the decay rate of ⁷¹Ge and the electron density at the nucleus


$$\sigma_0 \; = \; \frac{1.2429 \times 10^{-47} \; \mathrm{cm}^2}{\Sigma_i q_i^2 g_i^2} \qquad \begin{array}{l} \mathsf{q_i: E_{threshold} - E_{binding,i}} \\ \mathsf{g_i^2: square \ of \ the \ radial \ wavefunction} \\ [\text{PRC 56}, \ 3391 \ (1997)] \end{array}$$

- For this calculation, g_i² is only calculated, not measured
- Experimental tests of g_i^2 measure the ratio of electron capture to positron decay (EC/ β +)
 - $P_{EC}/P_{\beta+} = (P_K + P_L)/P_{\beta+} = P_K/P_{\beta+} (1 + P_L/P_K)$
 - $\sigma(P_L/P_K)^{\sim} \pm 3\%$, $\sigma(P_K)^{\sim} \pm 5\%$

Rev. Mod. Phys. **49**,1 (1977)

- $(EC/\beta+)_{theory}$ systematically *higher* than $(EC/\beta+)_{exp.}$ (see figure on the right).
- For most nuclides, effect is in the opposite direction to the Ga anomaly
- For 22 Na, measurement is $\pm 1\%$, but disagrees with theory by 5%. (Appl. Rad. Iso. 134 (2018) 225)
- Need a better experimental test, and hopefully with A near 71 (68Ga?)
- Will need complementary calculations.

EC/ β + Ratio Near A=71

Rev. Mod. Phys. 49,1 (1977)

Nuclide	Z	Α	K/β+ Theory	K/β+ Exp.	Ratio (Exp./Theory)	Ref.
Zn	30	65	30.5±0.4	27.7±1.5	0.908	Hammer (1968)
Ga	31	68	1.36±0.03	1.28±0.12	0.941	Ramaswamy (1959)

Nuclide	Z	Α	EC/β+ Theory	EC/β+ Exp.	Ratio (Exp./Theory)	Ref.
Zn	30	65	34.5±0.04	24.9±1.5	0.722	Sehr (1954)
Na*		22	0.1143±0.001	0.1083±0.009	0.948	Mougeot (2018)

^{*} Included here as it is the most studied nuclide for EC/ β + Ratio

Ga-Solar Neutrino Experiments

• Bahcall Book 132(20) SNU

 P_{ee} solar ~ 60% (SNO) , **56% (SAGE PRC)** =74 (11)

• SAGE PRC 80 (2009) 015807 65+-6

• GALLEX(new) PLB 685 (2010) 47 67+-7

Agreement is good but only to about 10% or so. Doesn't support or refute Ga Anomaly.

Comparison of Measured pp Flux: SAGE, Borexino

Table 2 | Borexino experimental solar-neutrino results

Nature 562 (2018) 505

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ⁻² s ⁻¹)	Flux-SSM predictions (cm ⁻² s ⁻¹)
рр	$134 \pm 10^{+6}_{-10}$	$(6.1\pm0.5^{+0.3}_{-0.5})\times10^{10}$	$5.98(1.0\pm0.006)\times10^{10}$ (HZ) $6.03(1.0\pm0.005)\times10^{10}$ (LZ)

PHYSICAL REVIEW C 80, 015807 (2009)

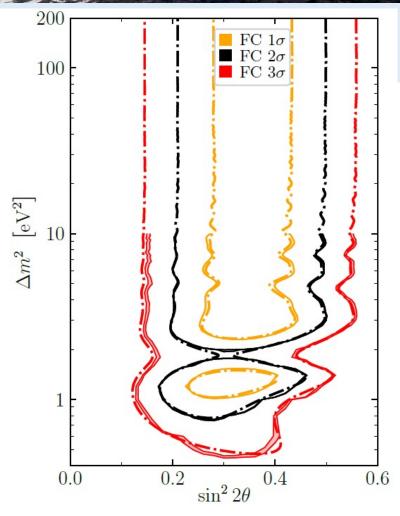
Dividing this capture rate by the cross section for capture of pp neutrinos from Table III gives the measured electron neutrino pp flux at Earth of

$$\phi_{pp}^{\dagger} = 3.38 (1_{-0.14}^{+0.14}) \times 10^{10} / (\text{cm}^2 \text{ s}).$$
 (18)

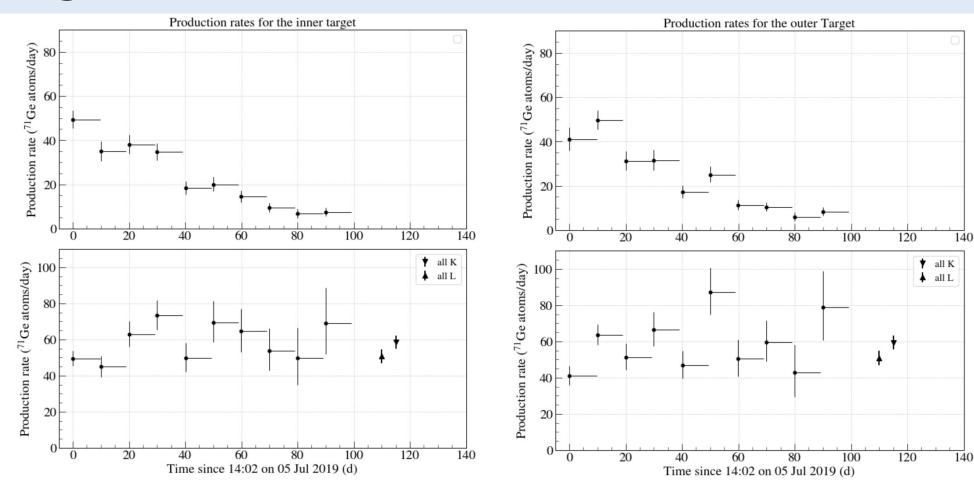
If we use Eq. (7) and the value of $\langle P_i^{ee} \rangle = 0.561(1^{+0.030}_{-0.042})$ from Table III then the pp flux produced in the Sun is

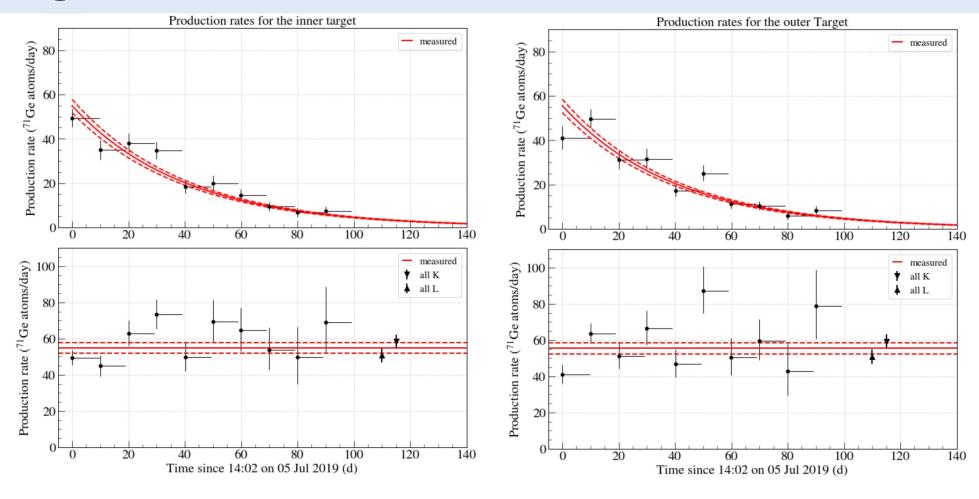
$$\phi_{pp}^{\odot} = 6.0(1 \pm 0.14) \times 10^{10} / (\text{cm}^2 \text{ s}).$$
 (19)

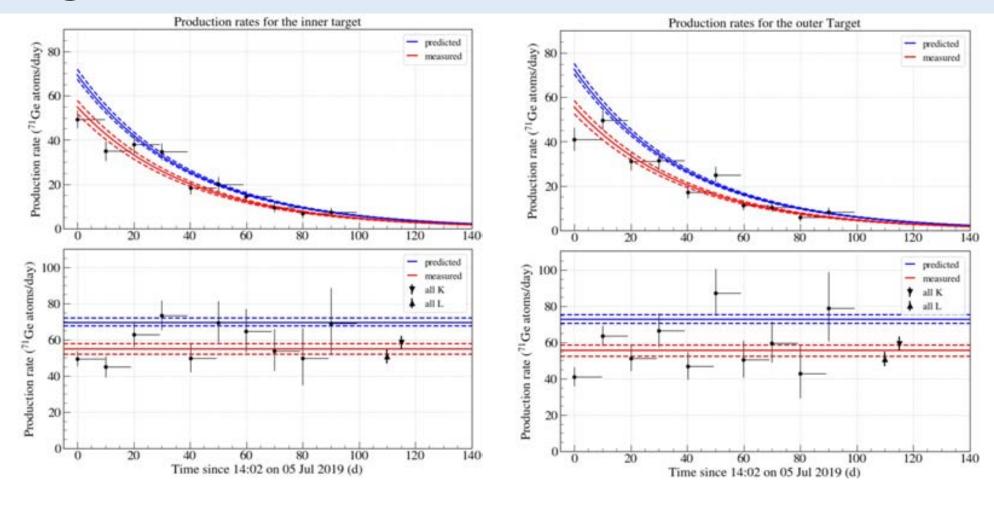
Our present result for the pp flux is in good agreement with the previous estimates that we have made during the past 6 years


The two experiments claim similar pp fluxes, about 15% or so. Not precise enough to exclude or confirm overall efficiency as explanation of the Ga anomaly.

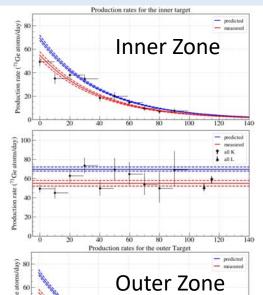
Wilk's Theorem in Question

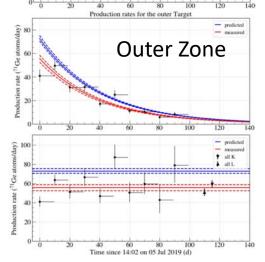

- In our analysis for the oscillation parameters, the test statistic is assumed to be χ^2 distributed (Wilk's theorem)
- However, Wilk's theorem is in doubt when: EPJ.C 80, 750 (2020), EPJ.C 81, 2 (2021)
 - The population of likelihood function occurs near the parameter space edge. But our result is not near the boundary.
 - Physical bound at $\sin^2 2\theta \ge 0$
 - There is a degeneracy in parameter space
 - Δm^2 becomes undefined when $\sin^2 2\theta \rightarrow 0$
 - $\sin^2 2\theta$ becomes unphysical when $\Delta m^2 \to 0$


The test statistic *a priori* significantly deviates from a χ^2 distribution


• A recent study found no significant difference between Wilk's and a Feldman-Cousins analysis for the BEST results.

Wilk's (dotted) vs Feldman-Cousins (solid). Analysis by arXiv:2111.12530.

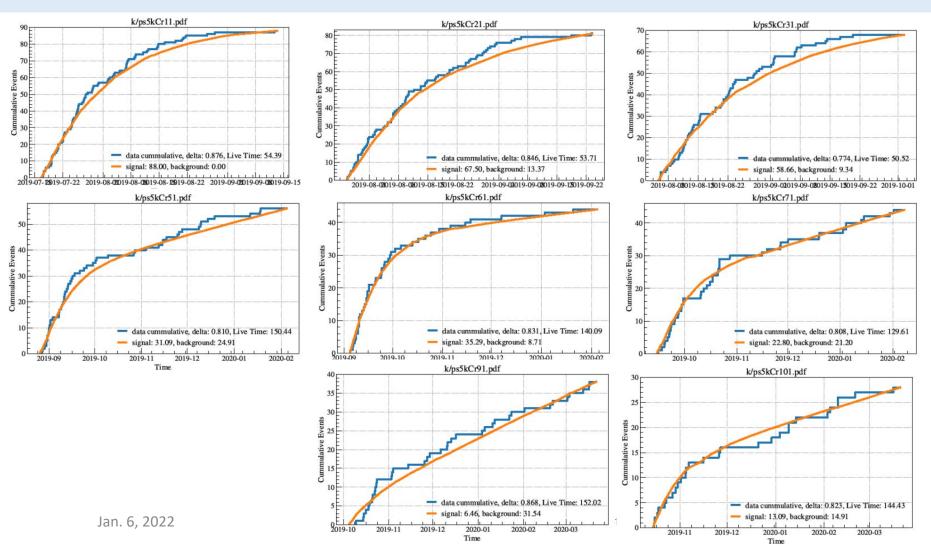

Predicted vs. Measured Production Rates

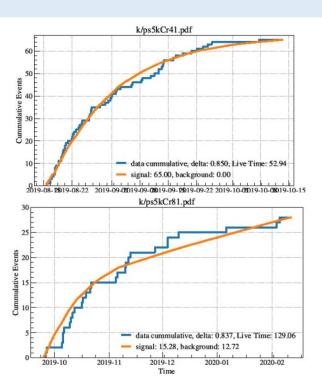

1+L-peak						
Darton ation						

It E peak						
Extraction	Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production		Carryover	⁷¹ Ge Production decay rate (atoms/day)
Inner-1	180	176.3	175.5	0.8	0.0	$49.4^{+4.0}_{-4.2}$
Inner-2	129	111.5	107.7	0.8	3.1	$44.9^{+5.6}_{-5.9}$
Inner-3	132	117.6	115.3	0.7	1.6	$62.9^{+7.1}_{-7.4}$
Inner-4	93	87.3	85.6	0.6	1.1	$73.3^{+8.0}_{-8.6}$
Inner-5	134	60.2	58.4	0.6	1.2	$49.8^{+7.7}_{-8.2}$
Inner-6	81	48.8	47.7	0.4	0.7	$69.5^{+11.0}_{-12.0}$
Inner-7	91	45.0	43.9	0.5	0.6	$64.6^{+11.6}_{-12.6}$
Inner-8	59	33.6	32.4	0.6	0.6	$53.8^{+11.0}_{-12.2}$
Inner-9	106	23.7	22.7	0.6	0.4	$49.9^{+14.9}_{-16.5}$
Inner-10	88	25.2	24.3	0.6	0.3	$69.1^{+17.3}_{-19.4}$
Comb. K+L	1093	724.0	708.2	6.1	9.7	$54.9^{+2.4}_{-2.5}$

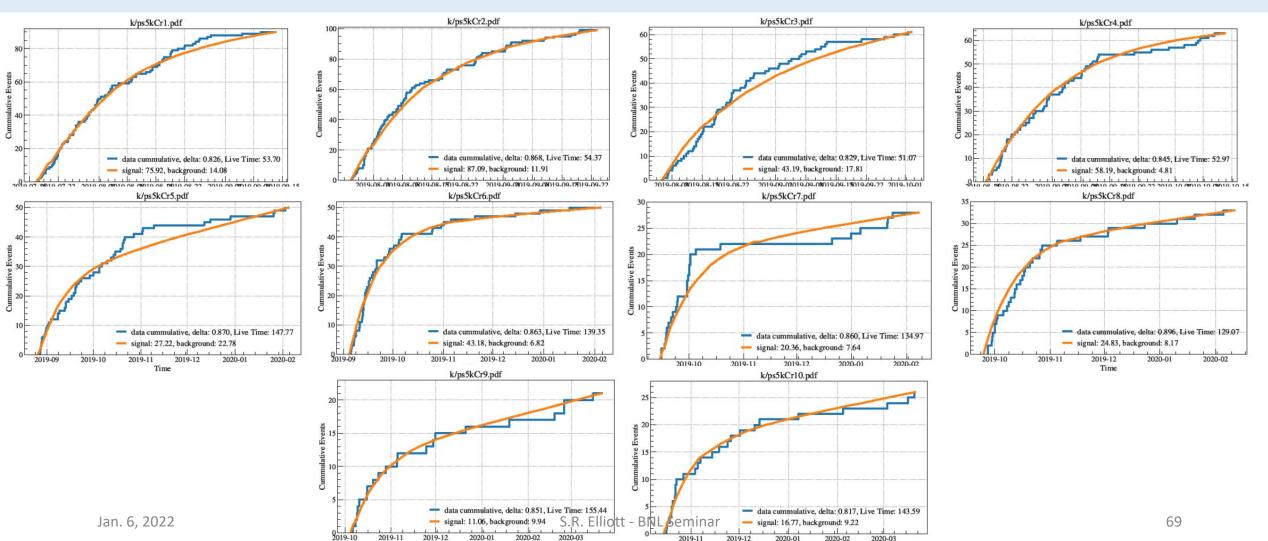
-	-	-
4		DOO!
		-pean

K+L-peak						
Extraction	Number of candidate events	Number fit to ⁷¹ Ge	⁵¹ Cr source production		Carryover	⁷¹ Ge Production decay rate (atoms/day)
Outer-1	181	133.4	129.6	3.7	0.1	$41.1^{+5.2}_{-5.3}$
Outer-2	174	163.8	158.6	3.3	1.9	$63.6^{+5.5}_{-5.7}$
Outer-3	116	92.5	88.2	2.8	1.5	$51.4^{+6.9}_{-7.3}$
Outer-4	98	82.3	78.9	2.5	0.8	$66.6^{+9.2}_{-9.8}$
Outer-5	120	64.0	59.5	3.5	1.0	$46.9^{+7.2}_{-7.9}$
Outer-6	97	62.3	59.3	2.6	0.4	$87.3^{+12.3}_{-13.2}$
Outer-7	69	38.0	34.4	3.2	0.4	$50.4^{+9.6}_{-10.6}$
Outer-8	68	43.4	39.2	3.9	0.4	$59.7^{+10.8}_{-11.7}$
Outer-9	66	20.2	17.0	3.0	0.2	$43.0^{+13.5}_{-15.3}$
Outer-10	81	31.8	28.0	3.6	0.2	$78.8^{+18.1}_{-20.0}$
Comb. K+L	1069	738.8	699.8	32.2	6.8	$55.6^{+2.6}_{-2.7}$


	IN	OUT
Predicted	$69.41^{+2.5}_{-2.0}$	$72.59^{+2.6}_{-2.1}$
Measured	54.9 ± 2.9	55.6 ± 3.1
Ratio	0.791 ± 0.05	0.766 ± 0.05


 4.2σ and 4.8σ less than the unity

Note:
$$\frac{0.77 \pm 0.05}{0.79 \pm 0.05} = 0.97 \pm 0.07$$


Similar deficits observed in both zones

Likelihood Fits (Inner)

Likelihood Fits (Outer)

2020-01 Time