

Barrel ECAL Integration Meeting

ANL EIC Calorimetry Team W. Armstrong, M. Jadhav, S. Joosten, J. Kim, J. Metcalfe, Z.E. Meziani, C. Peng, M. Scott, M. Żurek

11/10/2021

ATEHNA Barrel ECal

- Geometry
 - Followed by a large chunk of Pb/ScFi resulting in a total radiation thickness ~20X₀
 - Contains negative Endcap inside (partially serves as the Endcap detector)

- Layers with two types of sensors
 - AstroPix, Monolithic Silicon Sensors
 - Pb/ScFi
- Geometry
 - $R_{min} = 1.03 \text{ m}, L = 4.05 \text{ m}, Thickness ~40 \text{ cm}$
 - AstroPix: 1.155 cm per layer (1 cm of air), 1.8% X_0
 - Pb/ScFi: 1.586 cm per layer, \sim 1.08X₀
 - Imaging layers interleaved with Pb/ScFi layers for the first several X_0

Benchmarks and performance tests

- e/π particle identification
 - Best performance at p < 2 GeV/c
 - High pion suppression for inclusive DIS physics
- Spatial separation of $\pi^0 \rightarrow \gamma \gamma$
 - High granularity of pixels to separate two gamma clusters
 - No merging for p < 30 GeV/c at 1.03 m (barrel region)

Pion Contamination in Inclusive DIS Physics

pion:electron > 10^3 :1 for p < 2 GeV/c in barrel No existing calorimetry fully satisfy the requirement

18x275 GeV

10x100 GeV

https://indico.bnl.gov/event/8231/contributions/37820/attachments/28257/43445/EIC EMCal Pavia 21may20 v2.pdf

Two-steps Pion Rejection with ATHENA BECal

Boosting e/pi separation on top of E/p cut with 3D-imaging of particle showers

2: NN Classification + Likelihood cut

Classification Neural Network

- 3 Layers Convolutional Neural Network + 3 Layers Perceptron Network
 - Combined data from AstroPix and Pb/ScFi
 - 3 inserted dropout layers to control overfitting
 - Data formatted to N_events x N_layers x N_hits x N_features
 - 4 features (Edep, Rc, eta, phi), energy and spatial information for shower
 - 125k trainable parameters
- Supervised training
 - 100k events (electrons and pions), 80% training, 20% validating
 - 100k electrons and 100k pions benchmarking
 - \circ 20 epochs
 - Statistical uncertainty (binomial dist.) of benchmarking samples is shown

Pion Rejection Power

Solid line: 6 AstroPix Layers **Dashed line:** 9 AstroPix Layers

- Best e/pi separation for p < 2 GeV/c
- Comparable to crystal calorimeter at higher momentum
- A factor of 30~100 boost on top of E/p cut for p > 1 GeV/c
- 500:1 rejection at lower momentum from when E/p does not work well

Pion Rejection Power - Different Layers

9 layers \rightarrow 6 layers about a factor of 1.5 in pion rejection power

9 layers \rightarrow 7 layers similar performance at higher momentum

6 layers \rightarrow 7 layers small improvement at lower momentum as compared to

Detection of $\pi_0 \rightarrow \gamma \gamma$

Figure 11.46: Left: The calculated π^0 momentum spectrum for SiDIS at e + p 18 × 275 GeV collisions, using PYTHIA [1371]. **Right**: The probability of two photons to merge, calculated [1517] using GEANT4 [1412] for the cell size of 25 × 25 mm² located at 3 m from the interaction point, for the non-projective geometry. For the projective geometry the results for $\eta > 3.5$ would be close to the non-projective curve at for η =3.5.

Hard Limit for Cluster Merging

- For modular calorimeters, cell size is the limit
 - No reliable splitting for hits in neighboring cells or the same cell
- For pixel sensors, cluster profile is used $(3\sigma + 3\sigma \text{ spatial resolution})$
 - Single pixel Edep (MIP) cannot locate the center

Merging Probability of $\pi_0 \to \gamma \gamma$

Fast simulation of π^0 decays in barrel region

Detection of photons at R = 1.03 m

Cut out-of-acceptance events

Cut very low energy events (photon energy > 100 MeV)

Hard limit of merging

- Cell size for modular calo
- 6 sigma for AstroPix

Cluster position resolution from 6 AstroPix layers

Budget

Budget

Nb of layers	Direct Materials Total	Total Labor cost	Total Cost to project	Total in-kind Cost	Total
9	\$10,426,509	\$8,133,552	\$16,740,826	\$1,819,235	\$18,560,061
7	\$8,355,911	\$7,293,906	\$13,984,133	\$1,665,684	\$15,649,817
6	\$7,417,311	\$7,040,636	\$12,863,723	\$1,594,224	\$14,457,947

Difference between 9 and 6 layers: \$4.23M Difference between 9 and 7 layers: \$3.04M Difference between 7 and 6 layers: \$1.2M

Main Impact on Price

Main contributions that **do not scale** with nb of layers

Task	Cost	Comment		
Mechanical design	\$1,621,360	Estimated top-down from ATLASPix		
Electrical design	\$1,735,126	Estimated top-down from ATLASPix		
Assembly in BNL	\$631,776	Assumed 1 year (\$440K in-kind)		
Wafer prober	\$1.5M	Assumed 1 prober (will need eventually 2)		

Main impact on price

Main contributions that do scale with nb of layers

Task	6 layers	9 layers
Testing	\$760K	\$950K
In-house assembly	\$1.86M	\$2.86M
Wafers	\$5.44M	\$8.34M

Summary

- Early simulations demonstrated that 9 tracking layers would meet the π/e separation goal.
- Continued effort on more realistic shower energy deposition demonstrates that
 - 7 layers will definitely achieve these goals
 - 6 layers may be sufficient with slight degradation in performance, less redundancy, and *less room for MC vs reality differences*.
 - Optimization of layer spacing is continuing and performance with 6 (or 7) layers may increase.
- Each layer costs approx. \$1.3 M

Based on cost and performance, the Argonne BECal group recommends that we use 7 tracking layers, but also considers 6 layers as acceptable in terms of performance, with caveats.

Backup Slides

Two-steps Pion Rejection - 9 Layers

9 layers										
	Ed	ep/p cut		ML			Combined			
p (GeV)	Cut	e Eff.	pion Rej.	e:pion Weighting	e Eff.	pion Rej.	e Eff.	pion Rej.		
0.1	> 0.055 @ 9X ₀	99.83%	1.15	1:10	95.20%	490.39	95.03%	565		
0.2	> 0.070 @ 9X ₀	99.49%	1.33	1:15	95.68%	499.23	95.19%	663		
0.5	> 0.085 @ 9X ₀	97.26%	18.99	1:20	98.09%	96.96	95.40%	1841		
1	> 0.085 @ 9X ₀	97.70%	44.28	1:40	97.27%	87.15	95.04%	3859		
2	> 0.085 @ 9X ₀	96.82%	166.63	1:40	98.7 <mark>5</mark> %	43.93	95.62%	7320		
5	> 0.095 @ 20X ₀	99.06%	184.44	1:40	96.84%	35.95	95.92%	6631		
10	> 0.095 @ 20X ₀	98.61%	236.68	1:40	96.73%	30.14	95.39%	7134		

Two-steps Pion Rejection - 7 Layers

7 layers										
	Ed	ep/p cut		ML			Combined			
p (GeV)	Cut	e Eff.	pion Rej.	e:pion Weighting	e Eff.	pion Rej.	e Eff.	pion Rej.		
0.1	> 0.055 @ 9X ₀	99.83%	1.15	1:10	95.18%	375.25	95.02%	432		
0.2	> 0.070 @ 9X ₀	99.49%	1.33	1:15	95.87%	360.02	95.39%	478		
0.5	> 0.085 @ 9X ₀	97.26%	18.99	1:20	98.86%	77.00	96.15%	1462		
1	> 0.085 @ 9X ₀	97.70%	44.28	1:40	97.45%	75.53	95.21%	3345		
2	> 0.085 @ 9X ₀	96.82%	166.63	1:40	98.30%	43.00	95.18%	7165		
5	> 0.095 @ 20X ₀	99.06%	184.44	1:40	96.13%	34.13	95.22%	6294		
10	> 0.095 @ 20X ₀	98.61%	236.68	1:40	97.44%	35.17	96.08%	8323		

Two-steps Pion Rejection - 6 Layers

6 layers										
	Ed	ep/p cut		ML			Combined			
p (GeV)	Cut	e Eff.	pion Rej.	e:pion Weighting	e Eff.	pion Rej.	e Eff.	pion Rej.		
0.1	> 0.055 @ 9X ₀	99.83%	1.15	1:10	95.17%	378.54	95.01%	436		
0.2	> 0.070 @ 9X ₀	99.49%	1.33	1:15	95.63%	328.44	95.14%	436		
0.5	> 0.085 @ 9X ₀	97.26%	18.99	1:20	97.98%	68.89	95.29%	1308		
1	> 0.085 @ 9X ₀	97.70%	44.28	1:40	97.43%	70.81	95.19%	3136		
2	> 0.085 @ 9X ₀	96.82%	166.63	1:40	98.26%	37.63	95.14%	6269		
5	> 0.095 @ 20X ₀	99.06%	184.44	1:40	96.58%	30.33	95.67%	5595		
10	> 0.095 @ 20X ₀	98.61%	236.68	1:40	97.04%	26.38	95.69%	6243		

Cluster ϕ and θ resolution

- Resolution from 3D topological cell clustering using imaging layers
- Simulation for photons generated **at normal angle** to a calorimeter stave ($\theta = 90, \phi = 0$)
- Difference between true (generated) and reconstructed cluster angles checked
- If more than one cluster reconstructed highest energy cluster taken

Cluster ϕ and θ resolution

- Comparable resolution, $\delta = p1 \oplus p0/\sqrt{E}$
- Further improvements for the position resolution from single hit position in first layers

Cell Sizes Listed in YR

EIC Yellow Report

Туре	R _M ,	cell size,	σ_E/E	δ	€, mm	Ref
	mm	mm	at 1 GeV	mm	GeV ^{0.5}	
PbWO ₄	20	20	2.9%	0.4	2.6	[1513]
PbWO ₄	20	22	3.9%	0.3	2.6	[1514]
TF1	37	38	5.7%	0.5	6.0	[1515]
Shashlyk	41	55	8.4%	1.6	5.7	[1499]
Shashlyk	59	110	4.7%	3.3	15.4	[1516]

Table 11.28: The coordinate resolutions observed with several detectors for the normal incident angle θ_I . The resolution is parametrized using Equation 11.7. The stochastic factor ϵ appears to be approximately proportional to the cell size.

