The NNN water detector satellite meeting Oct. 27, 2015 in Stony Brook University

Plan for an Extended T2K Run

T. Nakaya (Kyoto)

15年10月27日火曜日

T2K (Tokai to Kamioka)

T2K History

• Discovery of $\nu_{\mu} \rightarrow \nu_{e}$

- In 2011, T2K found the clear indication of $\nu_{\mu} \rightarrow \nu_{e}$.
 - PRL 107 (2011) 041801 <u>citations : 1059</u>
- In 2012, Daya Bay, RENO and Double Chooz measured θ_{13} .
- In 2013, T2K observed $\nu_{\mu} \rightarrow \nu_{e}$ with 7.3 σ significance.
 - The constraint to neutrino CPV with the reactor θ_{13} value.

by A.K. Ichikawa

T2K Data taking record

T2K Neutrino Beam

Neutrino Beam mode Anti-Neutrino Beam mode

Future Prospect

- More Information at the Workshops in J-PARC
 - HINT2015: Future potential of High INTensity Proton Accelerator for Particle and Nuclear Physics, October 13-15, 2015
 - http://j-parc.jp/pn/HINT2015/
 - Neutrino Programs with facilities in Japan, August 4-6, 2015
 - http://www-conf.kek.jp/ws_nu_prog_in_jp/
 - http://www-conf.kek.jp/ws_nu_prog_in_jp/program/program.html

J-PARC

Mid-term plan of MR

FX: The high repetition rate scheme is adopted to achieve the design beam intensity, 750 kW. Rep. rate will be increased from ~ 0.4 Hz to ~1 Hz by replacing magnet PS's, RF cavities and some injection and extraction devices.
SX: Parts of stainless steel ducts are replaced with titanium ducts to reduce residual radiation dose. The beam power will be gradually increased toward 100 kW watching the residual activity.

JFY	2014	2015	2016	2017	2018	2019	2020
	Li. current upgrade		New PS buildings				
FX power [kW] (study/trial)	320	> 360	400	450	700	800	900
SX power [kW] (study/trial)	-	<mark>33</mark> - 40	50	50-70	50-70	~100	~100
Cycle time of main magnet PS New magnet PS	2.48 s	Large scale 1 st PS	Mas insta	s production allation/test	1.3 s	1.3 s	1.2 s
High gradient rf system 2 nd harmonic rf system VHF cavity	Manufacture, installation/test R&D, manufacture, installation/test R&D						
Ring collimators		Add.collimato rs (2 kW)	Add.collimat ors (3.5kW)				
Injection system FX system	Kicker PS improvement, Septa manufacture /test Kicker PS improvement, LF septum, HF septa manufacture /test						
SX collimator / Local shields		L	ocal shields				
Ti ducts and SX devices with Ti chamber	Beam ducts	ESS					

by T. Koseki at HINT2015

High Intensity beam study in June 2015 (cont'd)

- at the new betatron tune (22.239, 21.310) -

	Bunch number	repetition period (sec)	Beam power (kW)	Beam loss (kW)	Notes
1	2	2.48	132	0.42	measurement
2	8	2.48	529	1.7	estimation
3	8	1.3	1009	3.2	estimation
The	MD boo	onobility to rea	ab 1 N/N/ with th	ha high rapatit	ion roto onorotion

The MR has capability to reach 1MW with the high repetition rate operation.

T2K can accept 1.3MW beam with upgrade

by T. Sekiguchi at HINT2015

Improved Acceptable Beam Power Conponent **Limiting factor** Acceptable value $3.3 imes 10^{14} ppp$ **Thermal shock** Target >1.5 MW **Cooling capacity** 2 MW **Conductor cooling Stripline cooling** >1.25 MW Horn >1 MW Hydrogen production Operation 1 sec. & 320 kA **Thermal stress** 4 MW He Vessel >1.5 MW **Cooling capacity Thermal stress** 4 MW **Decay Volume Cooling capacity** >1.5 MW 3 MW Thermal stress **Beam Dump** >1.5 MW **Cooling capacity** >1 MW **Radioactive air disposal** Radiation **Radioactive water** 0.75→1.3 or 2 MW

Integrated POT projection

10

T2K Prospect

- T2K will collect the proposed POT (7.8E21) data by around 2020 when J-PARC could provide ~1MW beam.
- Why won't we use the high power (>1MW) beam of J-PARC after 2020? [NOTE] Hyper-K and/or DUNE will start beam data taking for CPV after 2025.
- The proposal of T2K extension (T2K-II) is seriously discussed/considered now.
 - Before 2025, J-PARC could provide 20E21 POT to T2K with 1.3 MW beam power, by which we have 3σ CPV discovery sensitivity for $\delta_{CP}=-\pi/2$.
 - By improving the T2K efficiency, we may count the effective POT as 25E21.

• <u>http://www-conf.kek.jp/ws_nu_prog_in_jp/</u>

T2K Sensitivities at 25×10^{21} POT

M. Friend

KEK

August 5, 2015

Nominal Assumptions

The following were used in these studies unless otherwise stated:

- Joint fit of $\nu_e + \nu_\mu + \bar{\nu}_e + \bar{\nu}_\mu$
 - Fit to the Asimov (nominal) data-set not the average of an ensemble of toy experiments
- True oscillation parameters: $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = -90^\circ$, $\sin^2 \theta_{23} = 0.5$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, normal mass hierarchy
 - \sim T2K, global best fit values
 - All four of these oscillation parameters are fit
- 5% error constraint on $\sin^2 2\theta_{13}$ from external (reactor) experiments (conservative "ultimate expected error")
- $\sim 2\%$ systematic errors see next slide
 - Fully correlated between ν and $\bar{\nu}$ -mode
- ± 250 kA horn current
- Assuming enhanced π 0 rejection using SK fiTQun π 0 cut
- See: Prog. Theor. Exp. Phys. (2015) 043C01 (T2K future sensitivity paper) for details about the fit procedure

Highlighted points are studied here

by M. Friend at Neutrino Workshop in J-PARC

Statisti	cs at 7.8	$ imes 10^{21}$ a	and 25	$ imes 10^{21}$	POT	
		v_e signal	v_e bkg.	\overline{v}_e signal	$\overline{ u}_e$ bkg.	
7.8E21 POT	$\delta = 0$	98.2	26.8	25.6	16.3	
	$\delta = -90^{\circ}$	121.4	26.4	19.0	17.2	
25E21 POT	$\delta = 0$	314	85.9	82.1	52.2	
	$\delta = -90^{\circ}$	389	84.6	60.9	55.1	
	300~	400 ν μ ⁻	→ν _e 6	0~80	$\frac{1}{\nu} \frac{1}{\nu} \frac{1}{e}$	s wrong-s
		ν_{μ} -mod	le $\overline{\nu}_{\mu}$ -m	ode		
7.8E21 POT	21 POT w/o oscillation		}	1,007		
	w/ oscillatio	n 741	741			
25E21 POT	w/o oscillati	on 8,519)	3,228		
	w/ oscillatio	n 2,375	i	1,096		

$\Delta \chi^2$ for resolving non-zero δ_{CP} vs. POT

• 99% (3 σ) CPV sensitivity for 45% (30%) δ_{CP} region

Current CPV and MH constraint

- Shall we know MH before T2K-II has the final sensitivity (2026)?
 - I think so. T2K and Super-K atm- ν results with reactor θ_{13} put a constraint on CPV and MH. The new NOvA result looks also prefer NH.

T2K-II

- Utilize the high power of J-PARC (>1MW) and the T2K beam line with upgrade toward 20E21 POT.
- Utilize the existing big far detector Super-K (22.4 kton fiducial) with upgrade.
- The T2K Near detector can be upgraded for T2K-II (under discussion) to improve the systematics.
- A new intermediate detector could be proposed to improve the systematics (if budget is available)
- Address many physics subjects in addition to standard PMNS CPV.
 - A new source of CPV in neutrinos
 - Determination of oscillation parameters
 - New physics (sterile, Lorentz Vioation, CPT, etc..)
 - Neutrino-Nucleus cross sections

Summary

- We enter the new era to study neutrino CPV by measuring $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.
- T2K-II with 1.3 MW beam can reach 3σ CPV discovery before 2026 when Hyper-K and DUNE/LBNF start.
- T2K-II will provide a positive impact to Hyper-K because the 1.3MW neutrino beam will be ready at the day 1 of Hyper-K (The current Hyper-K LOI is based on the 0.75 kW beam power).