

THEIA: An Advanced Scintillator Detector at LBNF

An Opportunity

Evolution of LBNE into DUNE@LBNF is major change:

US is building a world-class neutrino facility

World is coming to build DUNE

Basic idea is to leverage long-baseline physics program to also provide a much broader neutrino program.

Reference Design:

- 50-100 ktonnes WbLS
- Cylindrical geometry
- >80% coverage with photon sensors
- 4800 mwe underground
- Loading of various isotopes (Gd, Li, Te)
- Ability to deploy inner "bag"

60m

60m

An Opportunity

More bluntly: why not use a >50 kt WbLS detector in place of 20 kt (out of 40 kt) LAr?

An Opportunity

Critical long-term questions:

- How well can Theia do LBL physics?
- How well can Theia do broader (low-energy) physics?
- Is the cost reasonable?
- Can it be built on a reasonable time scale?

Critical near-term questions:

- What are the optical properties of WbLS?
 - Tells us how big detector can be
- How does the light yield scale vs scintillator fraction?
 - Tell us how many PMTs we need for low-E program
- How well can we separate cherlight from scintlight?
 - Tells us how well we can do LBL program
 - Tells us how well we can do particle ID at all energies

Path Forward Toward THEIA

THEIA "Interest Group" formed with concept paper:

Advanced Scintillator Detector Concept (ASDC):

arXiv:1409.5864

A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

J. R. Alonso,¹ N. Barros,² M. Bergevin,³ A. Bernstein,⁴ L. Bignell,⁵ E. Blucher,⁶ F. Calaprice,⁷ J. M. Conrad,¹ F. B. Descamps,⁸ M. V. Diwan,⁵ D. A. Dwyer,⁸ S. T. Dye,⁹ A. Elagin,⁶ P. Feng,¹⁰ C. Grant,³ S. Grullon,² S. Hans,⁵ D. E. Jaffe,⁵ S. H. Kettell,⁵ J. R. Klein,² K. Lande,² J. G. Learned,¹¹ K. B. Luk,^{8,12} J. Maricic,¹¹ P. Marleau,¹⁰ A. Mastbaum,² W. F. McDonough,¹³ L. Oberauer,¹⁴ G. D. Orebi Gann^{*},^{8,12,†} R. Rosero,⁵ S. D. Rountree,¹⁵ M. C. Sanchez,¹⁶ M. H. Shaevitz,¹⁷ T. M. Shokair,¹⁸ M. B. Smy,¹⁹ A. Stahl,²⁰ M. Strait,⁶ R. Svoboda,³ N. Tolich,²¹ M. R. Vagins,¹⁹ K. A. van Bibber,¹⁸ B. Viren,⁵ R. B. Vogelaar,¹⁵ M. J. Wetstein,⁶ L. Winslow,¹ B. Wonsak,²² E. T. Worcester,⁵ M. Wurm,²³ M. Yeh,⁵ and C. Zhang⁵

50 authors, 23 institutions, lots of experience: Borexino, DUNE, KamLAND, SNO, Double CHOOZ, SNO+, Daya Bay, LENA, KamLAND-Zen, MiniBOONE, Super-Kamiokande, WATCHMAN, ANNIE, T2K....

Brookhaven National Laboratory University of California, Berkeley University of California, Davis University of California, Irvine University of Chicago Columbia University University of Hawaii at Manoa Hawaii Pacific University Iowa State University Lawrence Berkeley National Laboratory Los Alamos National Laboratory
University of MarylandRWTH Aachen University
TUM, Physik-Department
University of PennsylvaniaMITUniversity of Pennsylvania
Princeton UniversityJohannes Gutenberg-University MainzSandia National Laboratories
Virginia Polytechnic Inst. & State University
University of WashingtonNew participation welcome
Contact

G.D. Orebi Gann, R. Svoboda, E. Blucher, JRK

wbls@lists.lbl.gov wblsrd@lists.lbl.gov

Planned Demonstrations

Site	Scale	Target	Measurements	Timescale
UChicago	bench top	H2O	fast photodetectors	Exists
CHIPS	10 kton		electronics, readout, mechanical infrastructure	2019
EGADS	200 ton	H2O+Gd	isotope loading, fast photodetectors	Exists
ANNIE	30 ton			2016
WATCHMAN	l kton			2019
UCLA/MIT	l ton	LS	fast photodetectors	2015
Penn	30 L	(Wb)LS	light yield, timing, loading	Exists
SNO+	780 ton			2016
LBNL	bench top	WbLS	light yield, timing, cocktail optimization, loading, attenuation, reconstruction	Early 2015
BNL	l ton			Summer 2015
WATCHMAN-II	l kton			2020

R. Svoboda

¥

Water-based Liquid Scintillator

At low energies, intrinsic light yield scales with scintillator fraction.

Water-based Liquid Scintillator

Normed PE/MeV vs LS-concentration(%) [Water at 0.001% for plot]

Water-based Liquid Scintillator Optics look good

Cherenkov/Scintillation Separation

- Long extinction length means detector can be large
- About 1/2 of Cherenkov light absorbed or scattered
- But separation of two components still possible

Cherenkov ID scales like

$$R_{s/c} \sim \frac{\gamma_C}{\gamma_S} \frac{t_{jitt}}{\tau_{scint}} \rho(\cos \alpha_C) R(\lambda)$$

 $\begin{array}{l} t_{jitt} = \mbox{transit time spread of PD} \\ \tau_{scint} = \mbox{scintillation time constant} \\ \gamma_{C} = \mbox{number of Cherenkov photons} \\ \gamma_{s} = \mbox{number of scintillation photons} \\ \rho(\mbox{cos}\alpha_{c}) = \mbox{angular weighting function} \\ R(\lambda) = \mbox{spectral response function} \end{array}$

So for a 4% scintillation fraction, standard PMTs, no use of angular information, and equal spectral response for C and S, $R_{s/c} \sim 0.25$

Cherenkov/Scintillation Separation Separation via Timing Simulation of 5MeV electrons in KamLAND-like detector Cherenkov (prompt, scarce) — Scintillation (delayed, abundant) 50 PEs per event/0.1 ns PEs per event/0.1 ns 50 40 40 30 30 20 20 10 10 40 45 30 35 50 30 35 40 45 50 Time [ns] Time [ns] 1.3 ns timing of standard 0.1 ns time resolution e.g. **PMT** LAPPD

C. Aberle et al, JINST 9 P06012 (2014)

Cherenkov/Scintillation Separation Separation via Timing

Large Area Picosecond Photodetectors (LAPPDs)

- Large, flat-panel MCP-based photosensors
- 50-100 ps time resolution (<1cm spatial)
- working readout system

Cherenkov/Scintillation Separation Separation via Timing

Exiting PMTs may be good enough

Cherenkov/Scintillation Separation Separation via Wavelength (+timing)

Cherenkov light extends beyond scintillation emission and absorption ,

And red travels faster than blue...

Red-sensitive PMTs exist

Path Forward Toward THEIA Simulation and Analysis Development

- Started with "RAT" simulation/analysis package
- Plus Additional Code from L-Z development

- Fully Open Source
- Includes complete THEIA geometry 12" HQE PMTs Simple WbLS properties
- Ported reconstruction algorithms from SNO and Super-K
- Adopted also by WATCHMAN
- Easily adaptable to test-stands
- Lots of development happening!

See Javier Caravaca's talk

Path Forward Toward THEIA Simulation and Analysis Development

Cherenkov/Scintillation Separation

Berkeley

Path Forward Toward $\ensuremath{\mathrm{THEIA}}$

Focus:

- Physics programs
- Requirements for future detectors
- Enabling technologies,
 - New scintillator cocktails (e.g., WbLS)
 - Loading techniques
 - Photosensors,
 - Inner containment vessels

Will begin serious community discussion on path toward a large-scale, multi-purpose detector like Theia