
THEIA:!
An Advanced Scintillator Detector at LBNF 



An Opportunity 
Evolution of LBNE into DUNE@LBNF is major change:  

US is building a world-class neutrino facility 
 

World is coming to build DUNE 

60m 

60m 

Reference Design: 
•  50-100 ktonnes WbLS 
•  Cylindrical geometry 
•  >80% coverage with photon sensors 
•  4800 mwe underground 
•  Loading of various isotopes (Gd, Li, Te) 
•  Ability to deploy inner “bag” 

Basic idea is to leverage long-baseline 
physics program to also provide a much 
broader neutrino program. 
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An Opportunity 

More bluntly: why not use a >50 kt WbLS detector 
in place of 20 kt (out of 40 kt) LAr? 



An Opportunity 
Critical long-term questions: 
•  How well can Theia do LBL physics? 
•  How well can Theia do broader (low-energy) physics? 
•  Is the cost reasonable? 
•  Can it be built on a reasonable time scale? 

Critical near-term questions: 
•  What are the optical properties of WbLS? 

§  Tells us how big detector can be 
•  How does the light yield scale vs scintillator fraction? 

§  Tell us how many PMTs we need for low-E program 
•  How well can we separate cherlight from scintlight? 

§  Tells us how well we can do LBL program  
§  Tells us how well we can do particle ID at all energies 



Path Forward Toward THEIA!

arXiv:1409.5864 

THEIA “Interest Group” formed with concept paper: 

50 authors, 23 institutions, lots of experience: Borexino, DUNE, KamLAND, SNO, 
Double CHOOZ, SNO+, Daya Bay, LENA, KamLAND-Zen, MiniBOONE, Super-
Kamiokande, WATCHMAN, ANNIE, T2K....	
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Site	

 Scale	

 Target	

 Measurements	

 Timescale	


UChicago	

 bench top	



H2O	


fast photodetectors	

 Exists	



CHIPS	

 10 kton	


electronics, readout, 

mechanical infrastructure	

 2019	



EGADS	

 200 ton	



H2O+Gd	


isotope loading, fast 

photodetectors	



Exists	



ANNIE	

 30 ton	

 2016	



WATCHMAN	

 1 kton	

 2019	



UCLA/MIT	

 1 ton	

 LS	

 fast photodetectors	

 2015	



Penn	

 30 L	


(Wb)LS	

 light yield, timing, loading	



Exists	



SNO+	

 780 ton	

 2016	



LBNL	

 bench top	



WbLS	



light yield, timing, cocktail 
optimization, loading, 

attenuation, 
reconstruction	



Early 2015	



BNL	

 1 ton	

 Summer 2015	



WATCHMAN-II	

 1 kton	

 2020	



Planned Demonstrations!



THEIA!

CHIPS	


WATCHMAN	



EGADS	



Gd loading and purification	

 Water-based liquid 
scintillator	



Te loading	



Neutron yield, LAPPD 
deployment	



Infrastructure, underwater 
integration	



WbLS, Gd, LAPPD, HQE PMT, 
full integration prototype	



R. Svoboda	





Water-based Liquid Scintillator 

S. Grullon et al., U. Penn 

At low energies, intrinsic 
light yield scales with 
scintillator fraction. 



Water-based Liquid Scintillator 

And at high energies, until Cherenkov 
contribution becomes large. 

D. Jaffe, BNL See M. Yeh’s talk 



Water-based Liquid Scintillator 

D. Jaffe, BNL 

Optics look good 

See M. Yeh’s talk 



Cherenkov/Scintillation Separation 

A. Mastbaum, 
Penn 

•  Long extinction length means detector can be large 
•  About ½ of Cherenkov light absorbed or scattered 
•  But separation of two components still possible 

Cherenkov ID scales like 

Rs/c ~
γC
γS

t jitt
τ sc int

ρ(cosαC )R(λ)

tjitt = transit time spread of PD 
τscint = scintillation time constant 
γC=number of Cherenkov photons 
γS=number of scintillation photons 
ρ(cosαc) = angular weighting function 
R(λ)=spectral response function 
 So for a 4% scintillation fraction, standard 

PMTs, no use of angular information, and 
equal spectral response for C and S, 
Rs/c~ 0.25 



Cherenkov/Scintillation Separation 

1.3 ns timing of standard 
PMT 

C. Aberle et al, JINST 9 P06012 (2014) 

Simulation of 5MeV electrons in KamLAND-like detector 
Cherenkov (prompt, scarce) 
Scintillation (delayed, abundant) 

0.1 ns time resolution e.g. 
LAPPD 

Separation via Timing 



Cherenkov/Scintillation Separation 
Separation via Timing 

Large Area Picosecond Photodetectors (LAPPDs) 

•  Large, flat-panel MCP-based photosensors 

•  50-100 ps time resolution (<1cm spatial) 

•  working readout system 

M. Wetstein 



8” standard	


(ETL)	



8” HQE	


(Hamamatsu)	

 SNO PMT	



10” HQE	


(Hamamatsu)	



11” HQE	


(ETL)	



12” HQE	


(Hamamatsu)	



Exiting PMTs may be good enough	
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Cherenkov/Scintillation Separation 
Separation via Timing 

See Tanner 
Kaptonoglu’s talk	





Cherenkov/Scintillation Separation 
Separation via Wavelength (+timing) 

L. Winslow 

Cherenkov light extends 
beyond scintillation emission 
and absorption 

And red travels faster than blue… 

Red-sensitive PMTs exist 



•  Started with “RAT” simulation/analysis package 
•  Plus Additional Code from L-Z development  

 
•  Fully Open Source 
•  Includes complete THEIA geometry 

12” HQE PMTs 
Simple WbLS properties 

•  Ported reconstruction algorithms from SNO 
and Super-K 

•  Adopted also by WATCHMAN 
•  Easily adaptable to test-stands 
•  Lots of development happening! 

Path Forward Toward THEIA!
Simulation and Analysis Development 

= RAT-PAC 

See Javier Caravaca’s talk	





Path Forward Toward THEIA!
Simulation and Analysis Development 
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B. Land (Berkeley) 



Cherenkov/Scintillation Separation!

PE 

Berkeley 



Focus:	


•  Physics programs 	


•  Requirements for future detectors 	


•  Enabling technologies,	



•  New scintillator cocktails (e.g.,  
WbLS)	



•  Loading techniques	


•  Photosensors, 	


•  Inner containment vessels	



Path Forward Toward THEIA!

Will begin serious community discussion on path
 toward a large-scale, multi-purpose detector like
 Theia!


