

Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

US-Japan proposal

- Precision neutrino oscillation studies
- Potential US-Japan proposal

Akira Konaka (TRIUMF)

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

$\mathcal{O}_{\mathcal{I}}^{\mathsf{RIUMF}}$ Precision era in \vee oscillation physics

Statistics

- Solar/reactor neutrinos: already in precision era!
- Long baseline neutrino CP violation studies
 - T2K-II: ~400 events (σ~5%)
 - HyperK: ~3000 events (σ~2%)
- Atmospheric neutrino studies
 - SK: ~10,000 sub-GeV events ($\sigma\text{-}1\%$) for CP
 - SK: ~30 multi-GeV matter oscillated events ($\sigma\text{-}20\%$) an order of magnitude statistics for HK and PINGU

• Systematics is the key for future experiments

• Let me use ϵ'/ϵ as a guide for the discussion

Cancellation of systematic uncertainties:

 $Re(\epsilon'/\epsilon) \sim \frac{1}{3} \times \frac{\Gamma(K_L \to \pi^+\pi^-)/\Gamma(K_S \to \pi^+\pi^-) - \Gamma(K_L \to \pi^0\pi^0)/\Gamma(K_S \to \pi^0\pi^0)}{\Gamma(K_L \to \pi^+\pi^-)/\Gamma(K_S \to \pi^+\pi^-) + \Gamma(K_L \to \pi^0\pi^0)/\Gamma(K_S \to \pi^0\pi^0)}$

- Beam normalization: K_L or K_S
- Decay modes: $\pi^+\pi^-$ or $\pi^0\pi^0$
- Double ratio for neutrino CP measurement

 $\frac{\Phi_{far}(\nu_e)/\Phi_{near}(\nu_\mu) - \Phi_{far}(\bar{\nu}_e)/\Phi_{near}(\bar{\nu}_\mu)}{\Phi_{far}(\nu_e)/\Phi_{near}(\bar{\nu}_\mu) + \Phi_{far}(\bar{\nu}_e)/\Phi_{near}(\bar{\nu}_\mu)} \simeq \frac{-16J_{CP}\sin\Delta_{21} + 16c_{13}^2s_{13}^2s_{23}^2a/\Delta m_{31}^2}{8c_{13}^2s_{13}^2s_{23}^2}$

 $\simeq -0.28 \sin \delta_{CP} + (0.07, 0.17, 0.3) [T2K, NO\nu A, DUNE]$ at osc. max

- Beam normalization: $\Phi_{far}\sigma_{far}/\Phi_{near}\sigma_{near}$
- Particle types: v or v-bar

RIUMF How well does cancellation work?

- Normalization: $\Phi_{far}\sigma_{far}/\Phi_{near}\sigma_{near}$
 - Near-Far flux shape difference:
 - Wider solid angle at near from line neutrino source: could be suppressed by an intermediate detector
 - Oscillation effect on the far flux: large difference for the wide band beam
 - Cross section: v_{μ} (near) and v_{e} (far)
 - v_{μ}/v_e cross section difference: a few % uncertainty? radiative correction, 2nd class current, nuclear effect?
 - Significant uncertainty in the background: several %? e.g. high energy tail (near), beam ν_e (far)
 - Flux and cross section need to be constrained separately for a systematics uncertainty of a few % level

RIVMF How well does cancellation work?

• Particle types: v or v-bar

- Flux is similar for ν and $\nu\text{-bar}$
 - similar π^+ and π^- flux at the production target
 - oscillation is the same except for CP viol. & matter effect
- Cross sections and backgrounds are very different!
 - $\bullet\,d\sigma/dE_{\nu}$ and $d\sigma/d\theta_{\nu}$ are different for ν and $\nu\text{-bar}$
 - Large wrong sign background for v-bar
 - \bullet CC1 π backgrounds are different for ν and $\nu\text{-bar}$
 - free proton contribution w/o nuclear effect for v-bar
- Flux & cross section need to be studied separately
- Handle on backgrounds and v/v-bar separation

Key components for systematics

- Systematics that do not cancel remains:
 - several of them at a few% level each: Important to study them to achieve a few % systematics
- Flux systematics:
 - Hadron production "Emulsion experiment"
- Cross section systematics
 - Cross section study with flux control "NuPRISM"
- Background identification
 - Gd : wrong sign backgrounds
 - WbLS : wrong sign and CC1 π backgrounds
 - mPMT, LAPPD : multi-prong backgrounds
 - Can be tested with controlled flux "NuPRISM"

New readout system

T.Fukuda

High speed scanning

Large angle scanning

٠

|tan θ |= 3.0

2.5

2

extension

3.5

 $|\tan \theta|$

90% 80%

•

Emulsion spectrometer T.Fukuda

244mm

C. Fukushima et al., Nucl. Instr. and Meth. A 592 (2008) 56

An emulsion spectrometer concept

Precision atmospheric $v_{\mu} \rightarrow v_{e}$

• $v_{\mu} \rightarrow v_{e}$ at several GeV: matter resonance

- Mass hierarchy determination
- Δ_{12} oscillation in the sub-GeV region:
 - large θ_{12} effect, matter effect, and CP violation

 $\bullet\,\nu$ cross section and hadron production are also the key

RTRIUMF

12

Innovations in ϵ'/ϵ

• Dual beam

Precision calorimetry

- fine grained and excellent resolution
 - Pure CsI (KTeV)
 - Liq. Kr (NA48)

العامية المعرية Innovation: Data / Monte Carlo comparison

^{[®]TRIUMF} Innovations for neutrino oscillations

- Large detector technology
 - Liquid Ar detector
 - Water Cherenkov detector
 - Photosensor innovation: large PMT, mPMT, LAPPD
 - Background identification: Gd, WbLS
- Simulations/event reconstructions
 - WCSim, FiTQun, RATPAC, ...
 - NEUT, GENIE, ...

• Untangling neutrino flux and cross section

• "NuPRISM", "Emulsion hadron production", ...

15

- Vibrant K physics community lead by ϵ'/ϵ
 - Critical studies on the challenging systematics
 - Competition between NA48(CERN) and KTeV(Fermilab)
 - Rare K-decay community going together
- Neutrino oscillation community is expanding
 - from T2K vs. MINOS/NOvA to DUNE vs. HyperK
 - critical studies on the challenging systematics to come
 - Cosmic/atmospheric v community going together
- Water Cherenkov community
 - Innovations: Photosensors, Gd, WbLS, software
 - Platforms: NuPRISM, Hadron production

US-Japan special funding request

日米科学技術協力事業(高エネルギー物理学分野)特別枠申請書(検討会等開催支援)

 For meetings to prepare for the full US-Japan proposal next February.

TRIUMF

- With discussion with Japanese neutrino leaders, a request was submitted.
 - Avoiding overlap of personnel with on-going US-Japan program on neutrino technology
- \$10k of travel for Japanese members was awarded to attend this meeting

氏名	小中 暫 Akira Konal	ka 🗸	職 特任	E教授			
所属	大阪大学核物理センター						
分野名	素粒子実験 ニュート	·97					
検討会等の詳細	1						
検討会等の内容	(議論する内容、将来計)	画との関連性、粘資の	見通し等)				
	T2Kおよび将来計画であるHyperKの感度の向上のため新しいプロジェクトを立ち上げる為の準備材 計を行う。						
	今年7月のJ-PARC PACに、1-4度のピームオフアクシス角を水チェレンコフ検出器で広く						
	覆うことによりニュートリノ相互作用をモデルによらず別定し、長基線ニュートリノ振動実						
	戦や大気ニュートリノ観測実験でのCP非保存バラメータへの感度を向上させる実験muPRISM						
	が提案される。本検討会はnuPRISM計画をより具体化し日米の協力体制を組織する事を目的						
	として、本年10月28-31日にStonybrookで行われるNNN国際会議のサテライト会議と						
	て計画する。この検討会	て計画する。この検討会の結論をもとに日米共同研究課題を立案し、翌年度日米事業の本課					
	間としての提案をまとめる事を目指す。						
	本特別枠では日本の派遣メンバーの旅費を申請する。米国側はnuPRISM spokespersonの						
	Michael WilkingがホストとなりまたBNLのグループやNNN参加者も参加する予定である。						
開催場所	The State University of	The State University of New York at Stony Brook					
開催期間	平成27年10月26	平成27年10月26日 ~ 平成27年10月27日					
必要経費							
物件費	件名		単価	員数	81		
	合計					P	
派遣旅費	氏名	所属・	戰	日数	旅費見込額		
	久世 正弘	東京工業大学	准教授	7	250,000		
	石塚 正基	東京工業大学	助教	7	250,000		
	住吉 孝行	首都大学東京	教授	7	250,000		
	角野 秀一	首都大学東京	准教授	7	250,000		
	合計					P.	
招聘旅費	氏名	所属・	職	日数	旅費見込額		
	Michael Wilking	Stonybrook As	Stonybrook Assist. Prof.				
	Kendall Mahn	Michigan State Prof.	Michigan State Assist. Prof.				
	合計					P.	
所要総額					1,000,00	00	
-					16		

Constraints on US-Japan grant

- Current US-Japan fund (PI: M.Yokoyama)
 - Covering wide range of R&D for long baseline neutrino
 - Expected to spawn off specific proposals:
 This new US-Japan proposal would fit as a specific project

• Budget

- Budget can cover travel for Japanese members, equipments and engineering costs
- Scale: \$200-300k/year? (Based on the current funding)
 - considered to be a seed fund for future large funding from other sources
- Award in May and the fund has to be spent by March
 - request to be submitted every year

18

Potential scope

• Experiments for precision v oscillations :

• NuPRISM for flux independent cross section study

- Cross section systematics for water Cherenkov for T2K/HyperK, atmospheric/cosmic v projects
- Test bed for Photosensor, Gd, WbLS technologies:
 - monochromatic v beam, atmospheric v flux responses
 - possibly 2nd phase of ANNIE, development for THEIA?
- Emulsion spectrometer for hadron production
 - Precise hadron cross section studies at 2–100GeV: Important for all the atm. v and LBL v flux studies
 - Experiment to be done at Fermilab and/or CERN
 - JSPS grant request is being submitted by emulsion, atmospheric V, cross section, beam experts

19

- 2015
 - Oct.27: this workshop
- 2016
 - Early January: call for US-Japan proposal
 - January 13-15: J-PARC PAC
 - February: Deadline for US-Japan proposal
 - March: Japanese committee
 - May: US-Japan committee and fund release
 - ???: Fermilab/CERN PAC's for hadron production

20

• Neutrino oscillation enters precision era:

- Critical study of systematic uncertainty needed: we can learn from the past success (ε'/ε)
- Key components for systematic uncertainties
 - Flux: precision hadron production studies
 - Neutrino cross section: independent of flux
 - Background ID: wrong sign, multi-ring

• US-Japan program to develop a platform?

- NuPRISM for flux independent cross section study and test the new technologies (photosensor, Gd, WbLS)
- Hadron production study with emulsion spectrometer

22

arXiv:1406.1407 (Smirnov et.al.)

CP violation effect is large! $P_{\mu e} \sim up$ to 20% With angular and energy smearing, up to ~5% effect ~2% measurement is required