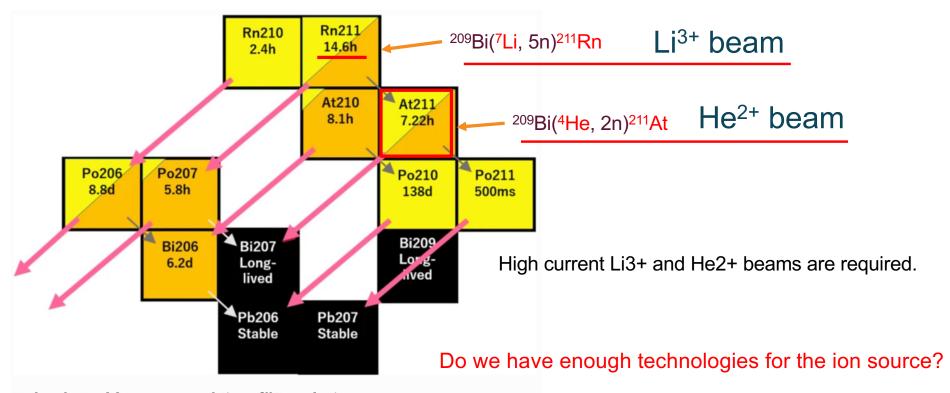


Lithium ECRIS for CLIP

C-AD MAC-18 Dec. 9, 2021 M. Okamura



Outline

- Background
- Proton and Deuteron ion source
- LI and He ion source
- Handling difficulties of Li
- Li feeding study
- Hexapole design limitation
- Beam extraction
- Summary

High performance ECRIS for He²⁺ and Li³⁺ beam.

Nuclear chart and decay processes relating to $^{\rm 211}Rn$ production

Journal of Radioanalytical and Nuclear Chemistry (2020) 323:921-926

Why ECRIS??

At CAD, we have world class ion sources. However,,

	Li ³⁺ capability	He ²⁺ capability	High current	CW like operation
EBIS	V	V		
LIS	V		V	
OPPIS				
H- magnetron			V	√
ECRIS	V	√	√	V

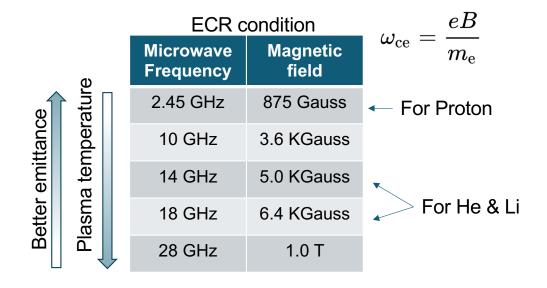
Why is the R&D required??

- No great Li ECRIS in the world.
- Lithium is a chemically active material.

Prototype test is indispensable.

Target species:

	Mass	Charge	Total Energy (keV)	Column Voltage (kV)	Peak Current (mA)
H ⁺	1	1	20	20	2
D ⁺	2	1	40	40	2
He ²⁺	4	2	80	40	2
Li ³⁺	7	3	140	46. 7	2


RFQ input energy : 20 keV/u

Duty factor : 10 % Emittance : 0.2 pi mm mrad nor. rms

Frequency Choice

Species / charge state	lonization energy
H+, D+	13.6 eV
Li ³⁺	122.4 eV
He ²⁺	54.4 eV
C ⁴⁺	64 eV
C ⁵ +	392 eV
O ⁵⁺	113 eV
Ar ⁷⁺	124 eV

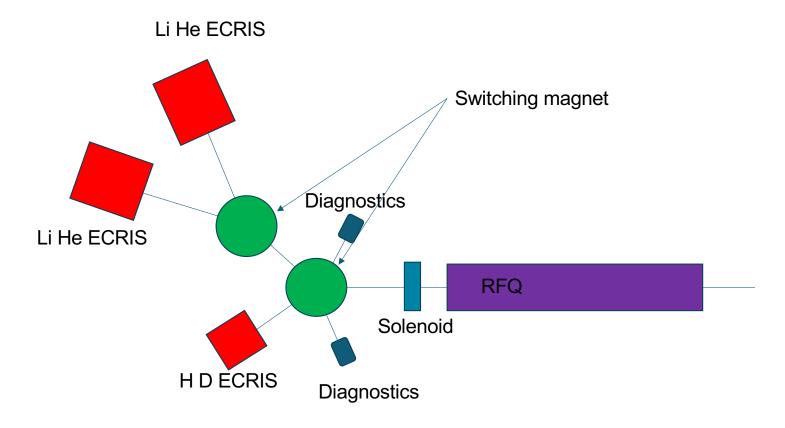
Geller's scaling laws

$$q_{opt} \propto log B^{3/2}$$

$$q_{opt} \propto log \omega^{7/2}$$

Beam emittance is proportional to the magnetic field strength at the extraction.

$$q_{opt}\! \sim \, P^{1/3}$$


$$P_{rf} \varpropto \omega^{1/2} \; q^3 \; V$$

$$I^{q+} \propto \omega^2 M_i^{-\alpha}$$

He²⁺ can be provided from a higher frequency ECRIS

Layout of Front End

For H⁺ and D⁺, Taylor type ECR works good.

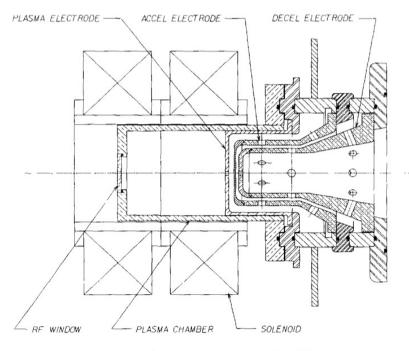


Fig. 1. Schematic of high-current low-emittance dc ECR proton source.

NIMA 309 (1991) 37-42

- 2.45 GHz (same frequency to a kitchen microwave)
- Two axial solenoid magnets
- No transverse confinement magnet
- 2 kW provides more than 10 mA
- Proton fraction more than 90%

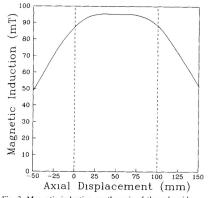


Fig. 3. Magnetic induction on the axis of the solenoids as a function of axial displacement from the microwave window. The dashed vertical lines define the axial extent of the plasma chamber.

Permanent magnet 2.45 GHz ECR is getting popular now

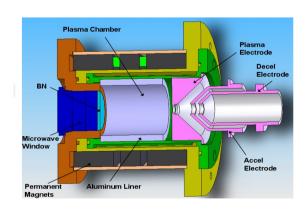


Figure 1: Schematic diagram of 2.45 GHz ECR ion source in PKU.

TUCOCK02 Proceedings of ECRIS2010, Grenoble, France

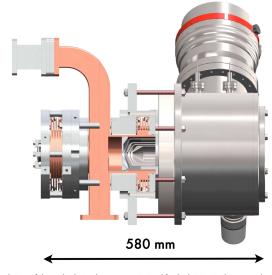
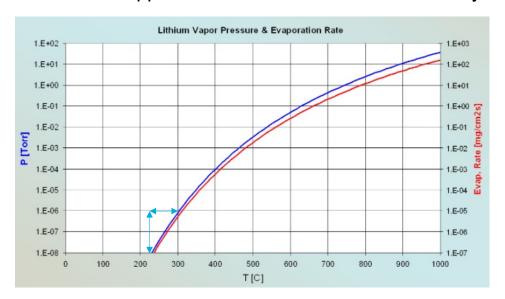


Figure 2: Internal view of the multi-electrode system optimized for high intensity beam production.

Commercial solution is available Pantechnik Monogan M-1000



Proton ECRIS can be fabricated in house or purchased.

There have been no mA class Electron Cyclotron Resonance Ion Source for Li³⁺ beam.

Lithium is classified as an alkali metal on the Periodic Table.

At 300°C, lithium has a significantly high enough vapor pressure to cause ppm level contamination in a vacuum system.

- How to control lithium vapor pressure?
- How to manage lithium contamination?

ECR requirement range from E-8 to E-6. Temperature range from 230 °C to 310 °C.

Temp. (°C) for Given Vap. Press. 10-8: 227 10-6: 307 10-4: 407

Comparison with other alkali metals

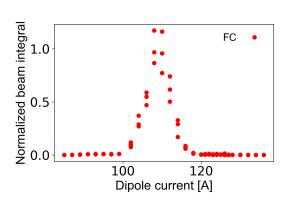
Natural abundance of ⁷Li is 93 %. 7 % is ⁶Li which is not our interest.

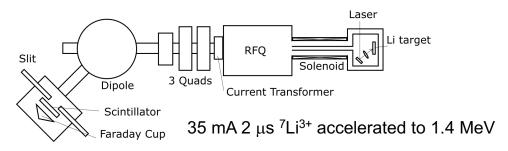
Name	<u>Lithium</u>	<u>Sodium</u>	<u>Potassium</u>	Rubidium	Caesium
Atomic number	3	11	19	37	55
Standard <u>atomic weight</u> (<u>u</u>)	6.94	22.98	39.09	85.46	132.9
Electron configuration	[<u>He</u>] 2s ¹	[<u>Ne</u>] 3s ¹	[<u>Ar</u>] 4s ¹	[<u>Kr</u>] 5s ¹	[<u>Xe</u>] 6s ¹
Melting point (°C)	180.54	97.72	63.38	39.31	28.44
Boiling point (°C)	1342	883	759	688	671
Density (g·cm ⁻³)	0.534	0.968	0.89	1.532	1.93

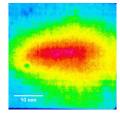
Notable chemical properties of Li

- Li does not readily react with water-free 0₂ below 373 K, but reacts above 373 K to form an oxide (Li₂O).
- The reaction between metal Li and N₂ is slow in the case of N₂ without moisture, but when even a small amount of moisture is present, the exothermic reaction proceeds rapidly even at room temperature to produce nitride (Li₃N).
- This is highly corrosive to iron and steel (the melting point of Li₃N itself is almost 1118 K).
- Li and C react at high temperatures to form carbides (Li₂C₂). The reaction with H₂ produces a stable solid compound (LiH: melting point 960 K, decomposition temperature ~1245 K), which is the most stable among alkali metal hydrides.
- Li at room temperature easily loses its luster and turns black when it comes in contact with air containing moisture, and becomes a white powder if left for a long time, but this is thought to be due to the formation of compounds such as Li₃N, LiOH, and LiOH-H₂O first, and finally Li₂CO₃ powder.
- From the standpoint of corrosion resistance, it is desirable to make the device out of Mo, Nb, Ta, Zr, Ti and W. Fe is also relatively safe, and SUS316 is used in fusion reactors as a nonmagnetic material.

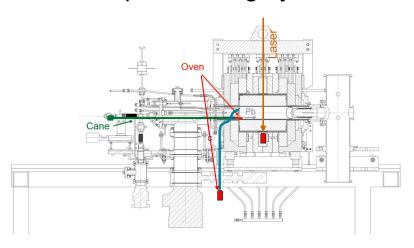
Li feed line is kept between 200 C and 300 C.

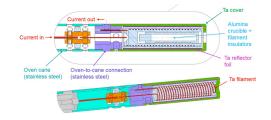

Interior of the ion source should be made of Mo, Nb, Ta, or SUS316.


Experience in handling Li for Laser Ion Source operation



- · Glove bag filled with Ar was used.
- · Li was cut and contained in pouch without exposure to air.

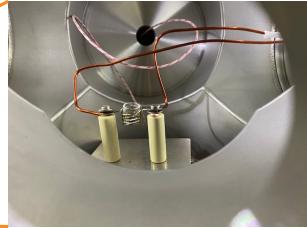


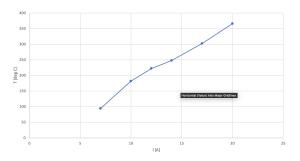

Captured image of scintillator

Develop Li feeding system

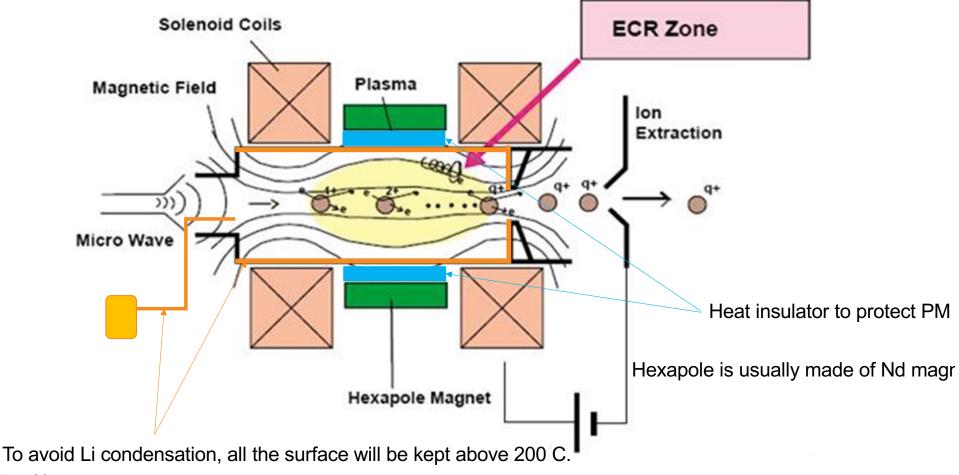
Oven type: Internal or external

Laser ablation type

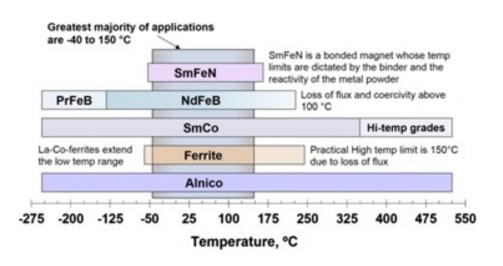


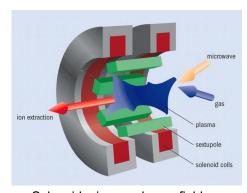

Lithium laser target at LIS

Li evaporation test is in preparation



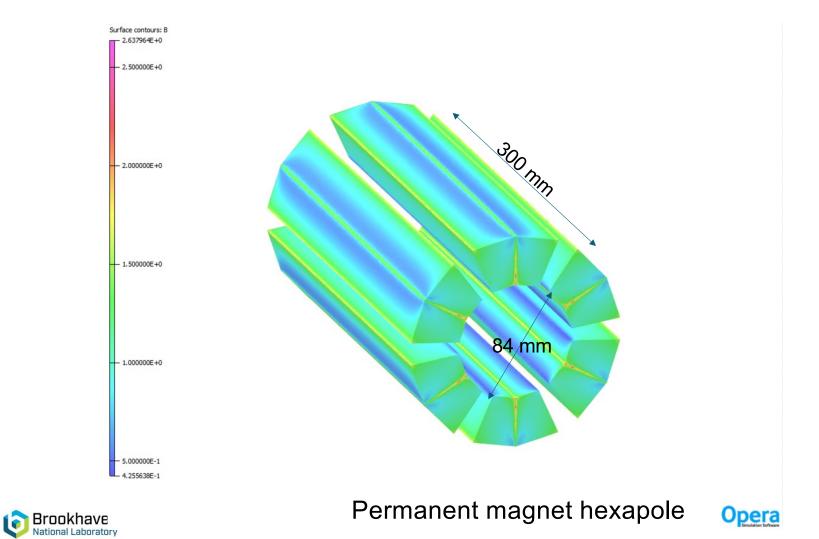
Based on the evaporation experiment, we will design temperature distribution in the ECRIS.

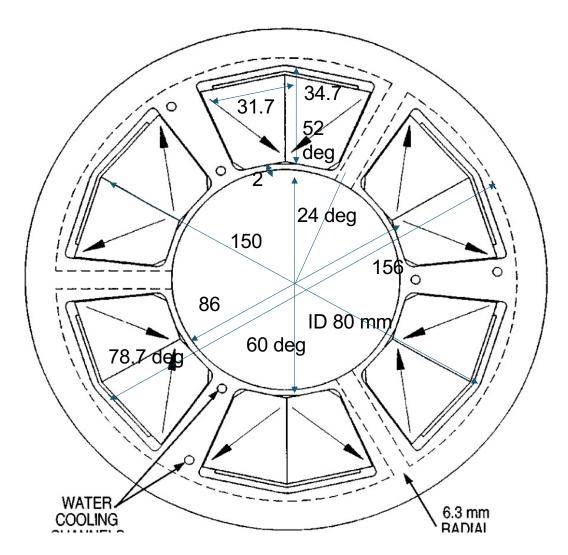

Brookhaven^{*}
National Laboratory


Materials for Hexapole magnet

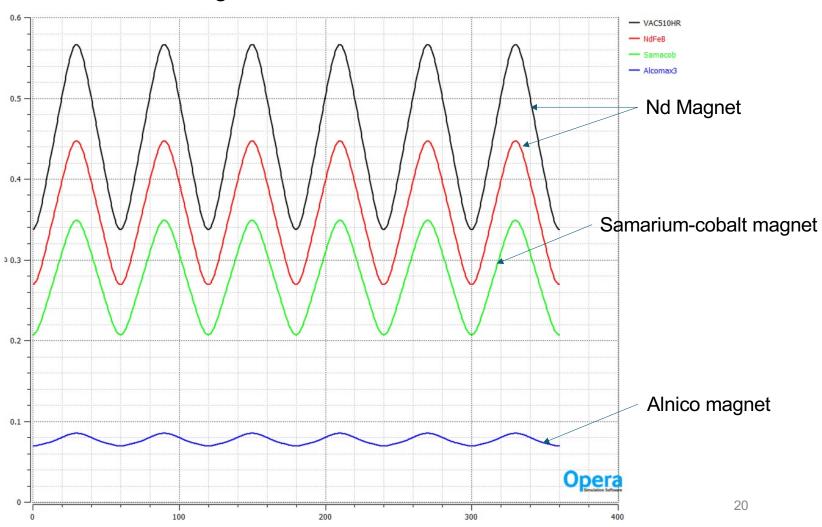
18 GHz microwave needs 6.4 kG.

Nd₂Fe₁₄B is commonly used to form hexapole field for transverse confinement. However, it is strongly recommended below 100 °C to avoid irreversible demagnetization.

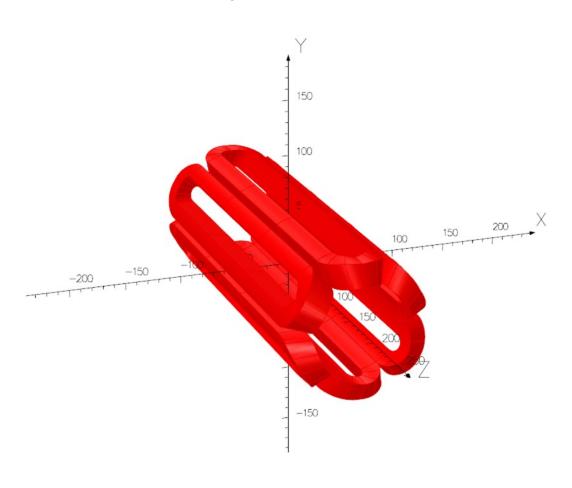

- Choice of a different PM material.
- Electrical magnet without core. (Core cannot be used because it will reduce the axial field of the solenoids.)
- Good design to prevent thermal penetration to the hexapole magnet.



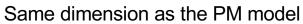
Solenoid mirror and cusp field



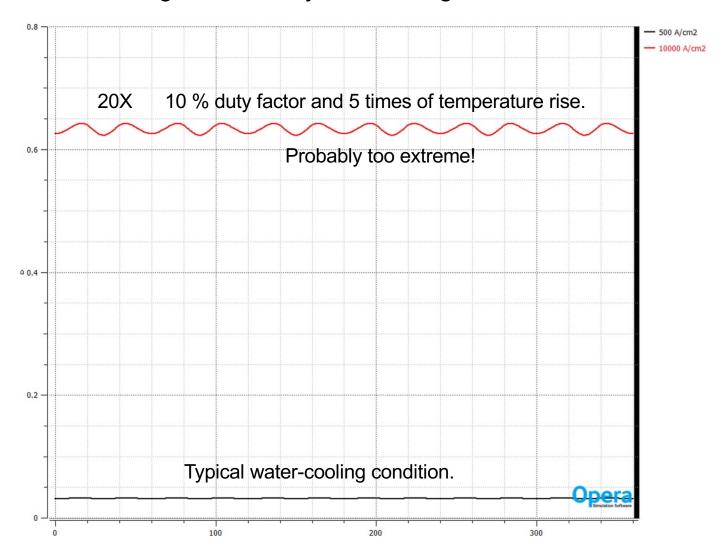
The simulation was conducted based on ANL's ECR design.



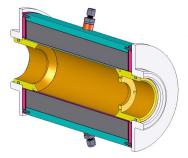
Magnetic fields at r = 35 mm



Electromagnet can be used??

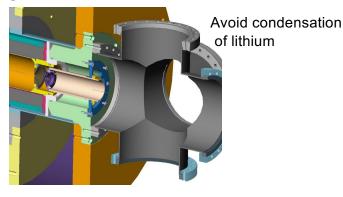


Magnetic filed by electromagnet



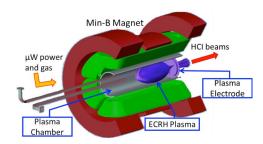
TEST ECRIS is proposed

for investigating the feasibility and beam current.

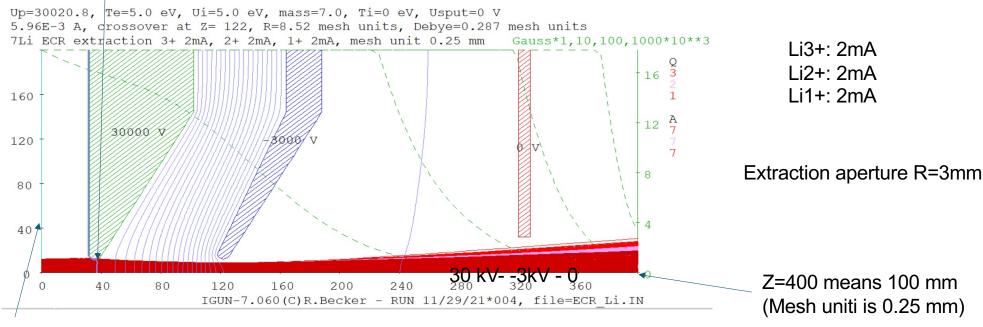

Design of plasma chamber

Heat insulation to permanent magnets

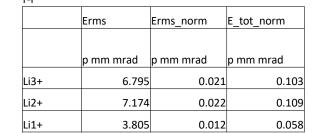
Volume less than 0.5L


Design of beam extractor

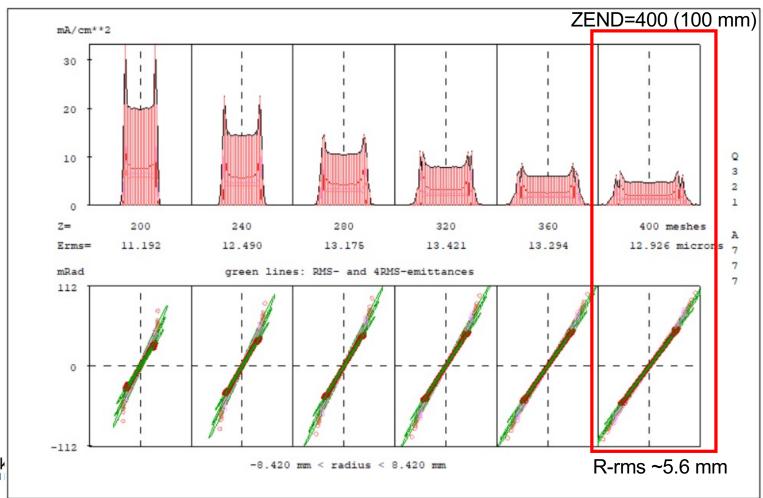
Design of microwave feed line



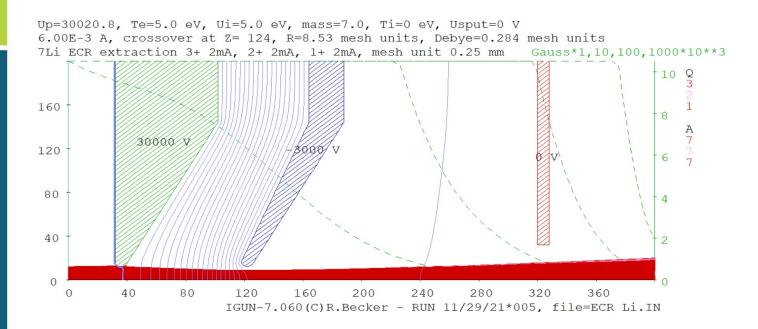
Parameters	XTD-750DBSL	XTD-750DBS	
FREQUENCY RANGE (extended frequency coverage available)	17.3 to 18.1 GHz (optional 17.3 to 18.4 GHz)		
OUTPUT POWER			
Traveling Wave Tube	750 W (58.8 dBm) Peak 500W (57.0 dBm) CW max.	750 W (58.8 dBm) CW	
Rated Power @ Amplifier Flange	340 W (55.3 dBm)	650 W (58.2 dBm)	



IGUN simulation: 1.68 T at extraction aperture

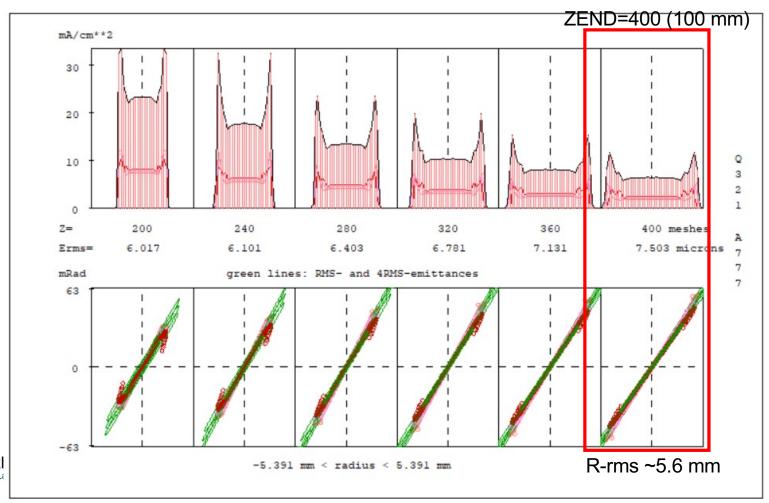

R=40 means 10 mm (Mesh uniti is 0.25 mm)

x-x' and y-y'					
	Erms	Erms_norm	E_tot_norm		
	p mm				
	mrad	p mm mrad	p mm mrad		
Li3+	3.398	0.010	0.052		
Li2+	3.587	0.011	0.054		
Li1+	1.903	0.006	0.029		



1.68 T at extraction aperture

IGUN simulation: 1.0 T at extraction aperture



r-r'			
	Erms	Erms_norm	E_tot_norm
	p mm mrad	p mm mrad	p mm mrad
Li3+	3.649	0.011	0.055
Li3+	2.048	0.006	0.031
Li3+	3.262	0.010	0.049

у'	x-x'	x-x'					
	Erms	Erms_norm	E_tot_norm				
	p mm						
	mrad	p mm mrad	p mm mrad				
Li3+	1.825	0.006	0.028				
Li2+	1.024	0.003	0.016				
Li1+	1.631	0.005	0.025				

x-x' and y-

1 T at extraction aperture

Summary

- Proton and deuteron ECRIS can be built or purchased.
- mA class LI³⁺ ECRIS is a challenging task.
- Li is chemically highly reactive. Needs to establish maintenance procedure.
- Li vapor supply systems will be studied. External oven, internal oven or laser.
- Hexapole magnet design must be experimentally confirmed.
- Based on test ECRIS study, we will scall every design parameters.
- He²⁺ can be delivered from the Li ECRIS.

Establish high current ECRIS for He²⁺ and Li³⁺ beams.

