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“Look, up in the sky...”

Sky-y

Unlensed

Image I

Sky-x

Lensed
Image

Sky-y

Sky-x

Part |: Describe re-mapping, maps from weak lensing

Part 2: Measuring map features, connect to physics



Displacement on the sky

B Unlensed/Source
& 9 Lensed/Image

Sky-y

source

/3 Sky-x
a.;,ugrver /5(6) = 9 —_ &(6) S|mple
Single-bend/’thin-screen” approximation 0(p)=p+a(f) Awkward

(figure from Wikipedia)



General 2D—2D mappings

p(6) By = B(6,) Taylor expand around §,

to 1st order

B_BO= é,(é_éo) (é_éo)= é: (p - b,)
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Effect of |**-order map on mean S X ()
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The mean of the image is
the image of the mean



Effect of |**-order map on covariance

Taylor expand around means, take By = </§> and 6, = <§>

Covariance matrix: = = ((,-(B)(B; - (B,))) i.j € {x.y}

siimage _ A -1 ZSource[ AT ]‘1

This 1s how lensing A affects
the image covariance X



Astronomers refer to 2~ as
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How do we relate properties of A
to features of (&



Symmetric Traceless Decomposition
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Deflection potential
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Fig. 11. Sketch of a typical gravitational lens system

Deflection angle é(é) depends on local
projected mass density 2(5 ) = f p(g ,2)dz

at location £ = 6 D, 1n the lens plane.

Define deflection potential y(0)
such that displacement angle

a(6) = Vip(6)

The deflection potential is related
to the projected mass density:

1, = 36D
V()= =2

= k()

C




The A matrix for a thin screen

_@(B)=6-Vy@) or B =69
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Convergence, shear, and shear,
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All 18t order in
> and so 1% order in
lensing mass.




Object brightness

Surface brightness = (sources per area) x (brightness of each source)

— Magnificatio v

Image Matrix Source

Sky-y 6-6)- A" J(B - By)

'. Arca(@) = Det[A"'] Arca(@)

Sky-x Since surface brightness is
preserved by lensing, spreading
the sources over a larger area,
Det[A-!] >1, must increase the

brightness by that same factor:

1
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“Mass-sheet Degeneracy”
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All shape
analysis boils
down to
measuring:

Choose
axes so
72,=0

Long axis

Short axis

. \/g I-k+7, Measuring a/b.
=% = = cannot determine

independently!



Reduced shears g, and g,

Longaxis a l-k+y, 1+y/(0-k) _1l+g

Shortaxis b l-x-y, 1-y/(1-Kk) 1-g

So measuring a/b fixes g,, in axes where y,=g,=0.

For general axes (e.g. pixels)
define reduced shears:

In general measuring a/b fixes V(g,%+ g,2)
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Note: inverse ¢—> negative shear
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Measuring (g,.2,) from Q
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