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ABSTRACT

Most problems in gravitational lensing require numerigdlisons. The most frequent types of problems are (1)
finding multiple images of a single source and classifyirgithages according to their properties like magnifica-
tion or distortion; (2) propagating light rays through largpsmological simulations; and (3) reconstructing mass
distributions from their tidal field. This lecture descrb@ethods for solving such problems. Emphasis is put on
using adaptive-grid methods for finding images, issues afigpresolution and reliability of statistics for weak
lensing by large-scale structures, and methodical questiglated to shear-inversion techniques.
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1. INTRODUCTION mann (1999), reviews of weak lensing are Mellier (1999) and
Bartelmann & Schneider (2001).

anly for very special lens models can numerical methods be

avoided in gravitational lensing studies. There are thssemtial
easons for that. One is the non-linearity of gravitatideasing, 2. INDIVIDUAL LENSES
e. the fact thatimage and source positions are relatedd@n-
ther in a non-linear fashion. This gives rise to the welbkn

<I.phenomena of mutiple imaging, strong image distortionsl, an

o forth. The second reason is that lenses exist which ane-the\ ot reminder of the basic assumptions underlying the the
elves best described by numerical models. Galaxy cluaters

. ; ory of individual lenses may be in order. There are three main
ne example, lensing by large-scale structures is anothler.

h by o , assumptions. First, the Newtonian gravitational poténfiszhe
~—though it is true that many aspects of gravitational lendigg | b I 2 d. veloaities in th itational
“Cfarge-scale structures can be derived analytically, tetaim- |enS be smallj®| < c*. Second, velocities in the gravitationa
lations require numerical techniques. The third reasdhas lens system, both of constituents within the lenses and eof th
%e interpretation of gravitational lensing effects ormgeoften Iensesd Wb'th respN?ct to t-?ﬁ' rdes;thframte 0{ tr;(:hmlf:rowavelback-
Qlequire the application of sophisticated algorithms ta gvew- grOllj.n ’ fe 'Smh?b < C. I Ird, edetx etﬂ Oth ederlsesgsgng
S§ng amounts of data. One example is the reconstruction of tHa€ ine-of-sight be small compared to the other distanc
Uprojected mass density distribution of a galaxy clustemitae ~ 5YStem. which are usually cosmological and thus compatable

2.1. Assumptions

. . g . 8 . o _1 . .

(Hbserved image distortions due to gravitational shear. the Hubble radius;/Ho = 3h 1Gpc,_\iwth Ho being the Hubble

.’ Needless to say, there are many more aspects of numeri€qnstantanth = Ho/100kms=Mpc™". _ S
.Zmethods related to gravitational lensing than | can covéhim It is worth noting how well these assumptions are satisfied in

><eview. An outstanding example are the highly elaboraténmetordinary lensing situations. Consider a galaxy clustenwiass
ds that have been developed over recent years for detagninM = 10°h~1M,. Assuming spherical symmetry, the Newto-

age shapes of faint background galaxies on CCD frames, anin potential at a distand®= 1h~1Mpc from its centre is

for extracting the gravitational shear signal from themisTisa

whole branch of data analysis on its own. Here, | can only deal GM

with numerical methods for relating mass distributionsheitt |®| ~ — ~ (2x 10°kms 1)2, 1)

gravitational lensing effects. R
Consequently, the outline of this lecture is as follows:sEir

| shall discuss methods for studying individual lenses,their

imaging properties, their critical curves and caustics.pén-

ticular, the use of adaptive grids and techniques for séagch - ; : . R

and characterising images will be discussed. Second, licéal distances in a cluster-lensing system. Finally, pecubdoaities

scribe how extended lenses can be treated numerically thging of galaxy clusters with respegt to the H,‘_Jbb'e flow are Of, order

multiple-lens plane theory. This will lead to the basic dipres several hundred kn1$, and typical velocities of galaxn::g within

for tracing light rays through (simulated) cosmologicadlroes.  galaxy clusters reach of order3ms %, but both velocities are

A large fraction of the discussion will be devoted to issuiees-  Way below the speed of light. The above assumptions hold even

olution and noise, and to spurious effects in simulateditens better for lensing by galaxies, of course.

statistics. Finally, third, | shall describe inversionhamues, We can thus safely assume the above conditions to be satis-

i.e. methods for reconstructing the projected mass digidb of ~ fied. It is then possible to project the lensing mass distidiou

lenses whose distortion has been measured. The classierKaionto a plane perpendicular to the line-of-sight, the lers@)

Squires method will be described, and also maximum-likelch and describe it by its surface mass dengitySources are as-

techniques and maximum-entropy methods. sumed to be located on a corresponding plane, the souroe. plan
General lensing theory and the theory of weak lensing ar typical lens system is sketched in Fi. 1.

covered by Koenraad Kuijken’s and Peter Schneider’s lestur The three distanceBysqs shown in Fig[L and explained in

in this volume. Basic references on lensing include thébteok  its caption are generally not additive because of space-tum-

by Schneider et al. (1992) and the lecture by Narayan & Bartebature, thu®s £ Dq + Dgs in contrast to flat space-time.

evidently much smaller than the speed of light squared. A
typical length scale for the radius of a galaxy cluster is 1
1.5h~1Mpc, which is several hundred times smaller than typical



2.3. The Lensing Potential

It will be convenient for the following discussion to intnacke

the lensing potential as the basic physical quantity for lens-
N ing studies. It is the scaled, projected Newtonian grawite
potential of the lens,

source plane

2 DgDgs
of VR =G . | SR, ©)

optical axfs

The so-callededuced(i.e. appropriately scaled) deflection an-
gle is the gradient of the potential,

D, )
a(x) = D (X) , (6)
lens plane and the lensing convergence (i.e. the appropriately scaled
surface-mass density) is
Ds 1, 1
K(®) = 5 OR0(%) = 5 06 (%) 7)
Finally, the gravitational tidal field is described by theotw
observer s /s component shear,

1 1
y1(X) = > (W11—Y22) = > (ar1—0a22), Y2(X)=W12=012,
FiG. 1.—Schematic view of a gravitational lens system. The lens @)

projected onto the lens plane perpendicular to the linsiglit, sources . " N ;
are located on the parallel source plane. There are threandes re-  Where the convention was used tligtis the derivative of the

quired to describe the geometry of the system, i.e. therisDysgs  th component of with respect to the coordinaxg. It is impor-
between the observer and the lens, the observer and theesamd  tant to note that the fact that all lensing quantities candreveld
between the lens and the source, respectively. Due to sppaeeurva-  from the scalar lensing potential establishes relationsdsen
ture, these distances are generally not additive. all of them. This will be exploited several times later.
Note that the lensing quantities must be rescaled in case the
. . coordinate scal& is changed. Suppogg is introduced instead

2.2. Coordinates and Notation of &. Since the physical surface-mass density of the lens must
Let us now introduce physical coordinagandf on the lens emain the same at any given physical location, the redueed d
and source planes, respectively. Alternatively, it isftenve- flection angle must transform as
nient to introduce angular coordina@sndp, which are obvi-

=4 = E/ =
ously related t& andfj through a(x) = E_g a(x) (9)

§=Dgb, n= DsB : (2)  and convergence and shear transform as

Dimensional coordinates are of course not suitable for migale g 2
calculations, which can only handle numbers. We thus have to [K(X), y(X)] = <_0) K(X),vi(X)] . (10)
introduce a length scafg), or alternatively an angular sceg, €o
in the lens plane. This length scale is sodabitrary. It implies
a length or angular scale 2.4. Imaging
Ds no &o Suppose now we were given some description of the lensing po-
No= D—dEo, or Po= D. Dg_ 8o (3) tential Y(X), or of the deflection anglé(X). This description

could be an analytical formula, or it could be in form of an ar-

in the source plane. Dimension-less coordinates are ttferede ay, i.e. a set of numbers given at grid poifisx;). We wish to
by know how the given lens images its background.

g 6 - fi We introduce a coordinate grij; on the lens plane subject
X=—=—, or y= n_»Fr (4) tothe condition that it be sufficiently well resolved. Thigams
& 6o Nno 6o that the smallest features in the lens must be covered basit le

in the lens and source planes, respectively. The numesc ¢ @ few grid points. Since we are given the deflection angle as
will have to deal with the dimension-less vect@andy. Ithelps & function of position, we can compute a deflection-angld,gri
numerical accuracy greatly if these numbers are of ordey.uni %ij = O‘(Xij} The mapped grid on the source plane is then simply
Thus, the first challenge in setting up a lensing simulatiori  ¥ij = Xij —@ij. This mapped grid will appear as a distorted image
choose an appropriate length- or angular ségler 6o, which ~ of the regular grid in the lens plane, as the example in tte lef
should both be adapted to the physical problem at hand, andRanel of FigL2 shows. . _
the requirement that numerical codes work most accurdtilgi ~ The mapping process must now be reversed in order to obtain
numbers they are dealing with are neither too large nor tallsm an image created by the lens. For doing so, sberceplane
compared to machine accuracy. Choosing unappropriatéhlends first covered with a regular grigf;. Next, we loop over all
scales can, for instance, render image searches unsudcessf grid pointsx; in thelensplane and find its mapped source point
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FiG. 4.—Left panel:Second-order numerical differentiation using cen-
FiG. 2.—Left panel: A regular grid in the lens plane (blue dots) is tred differencesRight panel:A simple method for finding points in the
mapped onto the source plane (red dots) using a numeriozipkisn  lens plane next to a critical curve uses sign changes of trabikn de-
of a deflection-angle field. Distortions are clearly visidRight panel:  terminant between the point considered and its four neaséghbours.
For each point in the lens plane, those points of a regularigrthe
source plane (blue) are searched which surround its mapgiatlip
the source plane (red). must satisfyo1 2 = Y12 = P21 = 021. Itis thus usually prefer-
able to check that this relation is satisfied within numeréza
curacy, and to uséi1 + 021)/2 instead of eitheoi1 2 or a1
¥ij in the source plane, and search for the nearest neightfjgursalone.
surrounding; in the source plane. Thisis illustrated in the right  Critical curves in the lens plane are defined by the condition
panel of FigdZ. The surface brightness of the source, kndwn that the Jacobian determinant of the lens mapping vanisi,the
the positionsy,;, can then be interpolated §; and the result deta(X) = 0. The elements of the Jacobian matrix ang =
assigned to the image poiXf. That way, the surface brightnessg;; — a; j, thus the Jacobian determinant is
at all points in the lens plane can be determined, and thus the '
lensed image be constructed. fiy. 3 shows an example. D=deta = (1—0a11)(1—az2) — Giz _ (12)
The left panel of the figure shows a simulated CMB tempera-
ture fluctuation field of 10x 10 angular size. The temperature | can he computed once the (numerical) derivatives of ik bo
increases from white to red. In essence, the temperatutedhic jeflection-angle components have been determined.
tion corresponds to a fairly smooth gradientacross the.fifé  one method of identifying grid points in the lens plane next
right panel shows the gravitational lensing signature impd 1 the critical curve proceeds as follows. 1®t signD), and
on the CMB at such angular scales by a galaxy cluster. The teRsnsider one particular grid poimo in the lens plane. The
perature visible at an angular positi6ron the sky;T’(8), isre-  point is next to the critical curve if, and only if, the sign thie
lated to the intrinsic temperatufethroughT’(6) = T[6—a(6)].  Jacobian determinant changes between it and one or moee of it
Thus, the light deflection by the cluster causes the viséile-t nearest neighbours. Hence, if the condition
perature distribution to be rearranged, yielding a higlplycsfic
pattern (Seljak & Zaldarriaga 2000). So0(S-10+ S10+S-1+ So1) < 4 (13)

is satisfied, the grid poirfyo is next to a critical curve (cf. the
2.5. Critical Curves and Caustics right panel of Fig[}#). Of coursey is not itselfon the criti-
cal curve, but to the positional accuracy determined by tite g
resolution, the position of the critical curve can be caaised
that way. Points on the source plane next to the caustic eueve
then easily found via the lens equatiofti; = Xcij — d(Xcij),
where theXcij are the grid points in the lens plane next to criti-
cal curves.

As mentioned in the introduction, the deflection-angle faid-
tains full information on the lensing mass distribution| éther
quantities like convergence and shear, but also image ricemi
tions, follow from the deflection angle via differentiatioh is
thus a common task to compute numerical derivatives.

Supposeha fulnctiqri(i)his ta%ulatgd on ahgrig, so that \?ve As an example, consider a lens model for a spiral galaxy, con-
are given the valueg; at the grid pointss;. The derivative of ~ gigting of a spherical halo and a flat disk seen almost edge-on
f(X) at a particular poinkoo in the first coordinate direction is (gartelmann & Loeb 1998). The deflection-angle field of such

approximated by a lens can be given analytically (cf. Keeton & Kochanek 1998)
3 (%) 1 Convergence and total she@t + y2)*/? as determined by nu-
== (fio— f_10) + o(hz) (11) merical differentiation are shown together with the mogubd
0X1 |z, 20 the deflection angle in Fif 5.

The critical curves and caustics of that lens model as deter-

whereh is the separation of the grid points in the chosen direanined with the method described above are shown inFig. 6.
tion; cf. the left panel of Figld4. This centred differences tilae
advantage compared to the more straightforward one-sidied d 2.6. Adaptive Source Grids
ferenced 19— foo or foo— f_10 Of being second-order in the grid
separatiorh. There are higher-order differencing schemes usin@ne of the most prominent goals of gravitational lensingigtsi
function values at more than two grid points, but the secondvith individual strong lenses is to determine the imagiragist
order scheme is usually sufficient. No lensing quantity $hou tics of a given lens model, for example the abundance of highl
vary strongly between two adjacent grid points becauserothemagnified events, the occurrence of multiple imaging with th
wise the resolution of the grid would be grossly insufficient  images satisfying certain conditions, and the like. Thiise in

We will typically need derivatives of the deflection angle principle by distributing many sources across the souraee!
Sinced is itself the gradient of a scalar potential, its derivagive imaging them as described before, and determining the image



FiG. 3.—Left panel: A simulated CMB temperature fluctuation field of’ 2010’ size. Right panel: The same field, lensed by a galaxy cluster,
which imprints a characteristic pattern on the temperatuctuations.

Lk 77771 covered with a coarse grid. This grid should obviously be fine
1 enough for the caustics to be properly resolved; for inganc
it must not be so coarse that the typically two types of causti
| curve, the radial and the tangential one, are closer thawa fe
i times the grid separation.
' P Next, those points on that coarse grid are identified anddsave
which are next to a caustic curve. This can, for instance, be
done by masking, i.e. by attaching a logical variable to gl g
f ] [ 1 points and setting it to eithérue or falsedepending on whether
ST 1 ee- e 1 itis oris not next to a critical curve. One can then cover the
R T R ooz 0 oz oe source plane with a grid whose resolution is doubled in both
: dimensions, and keep only those points which are identiith| w
N ) ) ] or surrounded by, points of the coarse grid which were masked
Fi. 6.—Critical curves (left) and caustics (right) of the spigalaxy  in the preceding step. This procedure can be repeated as ofte
lens model illustrated in Figl 5. as desired, i.e. until the finest grid level reaches the alfy
required resolution. Note that it is not the grids and theisks
) which need to be saved, but only the coordinates of those grid
properties. However, such events are rare. If one were tercovyoints which are either part of the coarse initial grid, orosé
the entire source plane with a regular grid of sources, thé g |ogical mask values areue. That way, lists of source positions
would have to have a very high resolution for rare events to hgan be constructed which are to be probed later for the images
reliably found. In turn, most of the sources probed would-prothey give rise to.
duce images failing the criteria imposed, so by far the Istrge  Naturally, this can only be a basic recipe which needs to be
fraction of the CPU time used would be wasted. adapted to the situation at hand. For instance, the condtiat
This situation calls for adaptive grids. We know in advancgrid points need to be next to a caustic can be replaced by the
that any strongly lensed image will occur near a criticaveyr condition that the absolute value of the Jacobian detemhive
or any strongly lensed source near a caustic. It is thosessur less than a given threshold which can be lowered at each step
that we need to treat in detail, while those far from caustives  of grid refinement. Such a criterion would naturally inceeas
are usually only required to normalise the statistics prigpe  the grid resolution near such grid positions where sources a
One approach for defining an adaptive grid, and there may leertain to be highly magnified.
others more suitable for a particular lensing situatioocpeds Of course, if statistics is the ultimate goal, one has to take
as follows. Again, we assume that we know the deflection amato account that sources near caustic curves were position
gle of the lens, either because it was provided numerically Guch as to have an unfair advantage over sources far from caus
because it is described by a known analytic formula. Then, wis. Since we have chosen to double the grid resolutioncit ea
saw in the preceding subsection how grid points can easily befinement step, each source on a refined grid representsionly
identified which are close to a critical curve in the lens plasr  quarter of the area on the source plane represented by aesourc
a caustic curve in the source plane. on the next coarser grid. Assigning a statistical weightrofyu
In order to save computational time, the source plane is firsh the sources on the finest grid, the weight must quadruple fo

0.5 — = 0.2 |
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FiG.5.—A lens model for an almost edge-on spiral galaxy: showrttee modulus of the deflection angle (left), the convergduoentre), and the
absolute value of the shear (right).

each coarser level. If the grid was refinddimes, the weight
of sources on the coarsest grid is thys= 2°N. Each source is
assigned a statistical weight in that way, and counts; times
in the final statistical evaluation.

The left panel in Fig. 7 shows the source locations chosen for _
evall%ating image statistics of the spiral lens model itatstd in
Fig.[d. o)

source position

2.7. Finding Images

The principle of finding the images of a given source is simple

Given a source at positioy, find those grid point&;; on the ) ) o )

lens plane which are mapped sufficiently closgda.e. whose FG. 8.—lllustration of the technique for finding images dessed in

mapped poits, are wiina specifed distance g e X i cell 1 e enspae re <ol i st pare)
The prIObler.Tj W'tl?fth's %pp_roach ISI that a squarg-shapeﬂ_@' urce plane (right panel). This would not necessarily lectise for

{e(itadn?u argri tf?e romt el Imagle P ane}z{ IS mapptﬁ_ ‘;F‘t‘-‘ﬁa lrectangular grid cells. A source is contained by a trianfgl imixed

orted hgure in the source piane. in most cases, s figuie W'ﬁross products] x J, for the shown vectorg; are positive.

be a parallelogram, but in rare cases, opposing cornerseof t

original rectangle may even be interchanged on the souacepl

How can it then be decided whether a given point in the source _ o

plane is inside or outside the mapped grid cell, orin othexdsp ~ This algorithm for finding images works well as long as the

whether the image of the given source falls within that gatéir ~ separation between images is larger than the size of thegjil

grid cell on the lens plane? in the lens plane. Very close images can be contained witiein t
The solution is to split each grid cell in the lens plane intesame grid cell, in which case the algorithm would find only.one

two triangles, because a mapped triangle always remairis a #f course, this potential problem can be remedied by inargas

angle, which always has a well-defined interiour (cf. Sctieei the grid resolution, but then a very large number of gridscell

etal. 1992). would have to be checked in vain for containing an image.
Consider Fig[B. The three grid points marked on the lens Again, a viable solution uses adaptive grids. One can start

plane in the left panel of the figure are mapped to the dislortenith a coarse grid on the lens plane. Searching for images on

triangle shown on the right panel, which contains the sopeee that coarse grid will almost certainly not yield all imagesao

sition. Calldy 23 the three vectors from the mapped triangle’gnultiply imaged source, but those missed will be closer than
corners towards the source position. It can be shown that tigid separation to those found. Then, those grid cells coin

source is inside the mapped triangle if the three vectoryrtsd  images can individually be covered with a highly resolveid gr
and the image search repeated on those sub-grids. Hence, the

dixdy, dy x ds, d x ds (14) first step represents a coarse scan of the lens plane forejisd ¢
containing at least one image, and the second step scans only

are all positive, with the vector product in two dimensioes those regions on the lens plane in detail where images age sur
definegas P iy to be found. If needed, further sub-grids can be similarited.

dx b=ajby—ax; . (15) Of course, even though this procedure is highly adaptive and
) ) ) S efficient, it always has a remaining resolution limit, ancages
~One straightforward way to verify this condition is to con-closer than that will not be resolved. It is then importaradapt
vince one’s self that the source point is inside the trianijle the resolution of the finest sub-grid to the situation at héod
all vectorsd; point within the angles spanned by the adjaceninstance such that remaining unresolved images would ereith
sides of the triangle, and that this condition translatésto[14) be resolved by observations. The right panel in Elg. 7 illus-
above. trates the result of an adaptive image search for all soatdes
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FiG. 7.—Left panel:source positions placed on a multiply refined grid in the seyslane. Caustic points are black. Obviously, the souraeepl
is best sampled near causti€ight panel:Number of images found for sources placed at the positioossiin the left panel.

positions shown in the figure’s left panel. Colours denote i
age numbers: Black means one image, blue three, and red fi
while green shows source positions for which an even nuntber
images has been found, in contradiction to the necessatdy o
image number produced by non-singular lenses. Such euents
rare, but they do occur because of the finite resolution lohit
the algorithm applied.

Figure® gives an example for possible results of that adapti
technique for finding images. Colour-coded is the total ntagn
fication of point sources in the source plane behind the a&mo
edge-on spiral lensing galaxy introduced above. The irgerea
ing spatial resolution towards the caustic curves is evidEne
panel inserted into the figure shows caustics (blue) anitalrit
curves (red) of the lens, the source position as a blue dobt jusic. 9.—The colour encodes the total magnification of a pointa®u
inside the right-hand “naked” cusp, and the three imagesds rlensed by an almost edge-on spiral galaxy; blue means a ficagion
hexagons whose size logarithmically encodes the image imagnear unity, yellow means very high magnification. The adeptéso-
fication. lution of grid cells on the source plane is clearly visibleheTsize of

the grid cells decreases substantially towards regionsgbf magni-
fication. The inserted panel shows caustics and criticalesuof the
2.8. Asymmetric Lenses same lens (blue and red, respectively), a source positasedb the
right-hand “naked” cusp, and the three images as red hezagdiose
So far, we have used a model for a spiral galaxy as an examize logarithmically encodes their magnification.
ple for a complex lens whose properties need to be determined
numerically. Despite its complexity, the model is still hig
symmetric; and what is more, its deflection angle is givenras af the source plane with the dots marking source positiomg, a
analytic formula. Sources were so far assumed to be pdiat-li their colour illustrating the image number. Black, blue aed

Let us now increase the level of complexity and use a numemeans one, three, or five images, respectively. The catste s
ically simulated galaxy cluster to gravitationally lengended tures can clearly be identified as the boundaries betweek bla
sources. Again, we assume the deflection angle to be given aaad blue and between blue and red, respectively.
postpone the question as to how it can be determined from an
N-body simulation. 29

All techniques described above for computing convergence e
and shear from the deflection angle, for finding critical @srv Extended sources can be described in a variety of ways. What
and caustics, for placing sources on an adaptive grid, and ffollows is a simple description for elliptical sources, hiterna-
finding images within grid cells split into triangles remamlid  tive source models can easily be constructed along sinmiles |
unchanged. Figuled0 shows an example. We assume that source positiojishave already been found,

The modulus of the cluster’s deflection angle is shown as th@eferentially on an adaptive grid as described beforeo AMlse
colour plot in the left panel. The right panel shows a sectioneed to be sure that the grid resolution in the source plasd-is

Imaging Extended Sources
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FIG. 10.—The colour plot in the left panel shows the modulus ef dikflection-angle field in the lens plane of a numericallyusated galaxy
cluster. The right panel shows how sources are adaptivatedlon the source plane (dots), and how many images thasesdave; one (black),
three (blue) or five (red). The boundaries between the cslmark the caustic structure.

ficiently high as to resolve the smallest sources to be censii connected. The first step is therefore to group the imagegoin
Elliptical sources are described by three more parameteigfo images. This can be done with a variant of the classical

viz. their size, their ellipticity, and their position argp. Let us  friends-of-friends algorithm: Pick one arbitrary pointad any

describe the ellipticity by = b/a, with a andb being the semi- given set of image points and search for another image point

major and semi-minor axes of the ellipse, respectivelyalyin  which is at most/2h grid units away from the first poin is

we introduce an effective radiusby demanding that a circle the grid size in the lens plane. If there is such a point, isited

of radiusr have the same area as the ellipse, heneevab.  a “friend” and grouped into the same image as the first point.

By rotating by an angle an ellipse centred on the coordinateNow take the “friend” and repeat until no further “frienddrc

origin whose axes are aligned with the coordinate axes,nt cde found and the image is complete. If more image points are

straightforwardly be shown that a grid po#i is enclosed by left on the lens plane, pick one of those and repeat the pgoces

the ellipse if the condition until all image points have been grouped. If the image isdarg
52 52 enough, and the grid resolution on the lens plane is highgimou

Y1 ; Y5 for the image to consist of many points, the image magnificati
cos'e (? + e6y§) + sirg (? T eéyf) is simply the ratio between the numbers of pixels coveredby a

1 image and the number of pixels covered by the source.
+  20y10y2 sin(pcos(p<— — e> g(a?s) Once all image points belonging to a single image have been
€ identified, it is often useful to determine the boundary poin
. - . . I of that image, e.g. by identifying those points inside angma
IS SatISer?H wherey :IV'J —Js Iftt.h]f:‘ gr'g pomé%,t,hwhose which have a neighbour outside the image. By suitably order-
image in the source plane 5, satisfies Eq.[{16), the image j, ' tha houndary points, a boundary line can be found whose

age in ; n
EOIHW}J‘ IS parthof the source, ?”d tBe: |rrr]1age can bﬁ CantrUCt%ﬁgth can be measured and used in further steps of the auto-
y assigning the source’s surface brightnesg;ab the image  \asic image classification. Next, the curvature of the image

pointX;j. By mapping the entire lens plane onto the source plarl?an be found by first i e ; : ;
) A : : ; y first identifying the image point which of the
and checking EqL{16) for each individual imaged grid pgint source centre, then search for the boundary point mostndista

all image points belonging to the given source can be idedtifi 45 16 so-defined image centre, and finally searching fer th
It is often desired for statistical purposes to automaiical (% ;

h e | ber of i A le is th oundary point most distant from the first boundary pointeSeh
characterise a largeé number of Images. An example 1S e Gfyea points uniquely define a circle whose radius can beased
termination of cross sections for the formation of largevijea

; . . : an approximation for the arc radius. And so on, you get the
tional arcs by a numerically simulated galaxy cluster, fbick drift: Once image points are grouped into individual images

alarge number of sources need to be imaged and the image Pragi ngary curves have been determined, images can be eldssifi
erties automatically quantified to search for the rare “giarcs. b

Most of the methods described here have been introduced an)éadaptmg elementary geometrical figures to them.
used extensively e.g. by Bartelmann & Weiss (1994), Bartel-
mann et al. (1995, 1998), Meneghetti et al. (2000, 2001); see 2.10. Deflection Angles of Asymmetric Lenses
also the contribution by Massimo Meneghetti to this volume.
A source may have multiple images, thus the point sets iBo far we have assumed to be given the deflection angle either
the lens plane found by imaging extended sources need not & an analytic expression or as two two-dimensional arréys o



numbers giving its two components as a function of position i
the lens plane. We now need to describe methods for obtaining
the deflection angle of a numerically simulated lens. _ L - —
The first issue to be discussed is the spatial resolutiorceSin
the simulated lens is composed of discrete particles whaph r
resent a smooth mass distribution in reality, the deflecimgie
must not be computed by simply summing up the deflection an
gles of the individual particles: The result would be a odilen
of microlenses rather than a single macrolens, having mauny s
rious and undesired imaging features. | [
Rather, the collection of particles has to be projected anto ’ ’ | ,
lens plane, on which it needs to be smoothed in some way. We - - w_ _w_ _
will return later to the issue of how particles should be aort . .
into grid cells. An important point to be addressed before i§!¢-11.—The “cloud-in-cell” (left panel) and “triangular gbed
how large the grid cells should be chosen. They should acud” (right panel) interpolation schemes are illustdateere. The
small enough for important features of the lens to remaintide E)Fgr?fg‘;t%gspsairst'gsesipgonsg('jogr::r;n;ﬁfggﬁj‘é g:% %Tgefﬁ)gﬁ’ve%ﬁ%g
f|abI“e, th_e_y Shof,”d be Iar_ge en_ough for the surfag:e (_je_nsio:y_sm schemes assign the particle mass to the eight and 27 neeigisibours,
the “graininess” due to its being composed of individualtipar respectively (in three dimensions).
cles, and they should be large enough so that Poisson ereors a
smaller than a certain threshold. If the number of partiples

grid cell isnk?, its Poisson fluctuation ig nh?, thus the discrete- The CIC and TSC interpolation schemes are illustrated for tw

ness of the particles gives rise to fluctuations in the serfaass dimensions in Figldl1. For all schemes, the kernel has to be

density. Demanding that the relative fluctuations of thesitgn normalised such that all particle mass fractions add up ity.un

should be smaller than< 1, the cell sizeh has to be chosen ~ Suppose now we have obtained the surface mass density on a

such as to satisfyn?)~1/2 < e. It is impossible to give a gen- 9ridKij = k(X;j), then the deflection angle can most straightfor-

eral rule applicable to the majority of lensing situatiobst it ~ wardly be determined by direct summation as

is clear that resolution, smoothing and particle noise haee 1 i — Xl

carefully balanced by choosing the grid cell size appraelya dij = = ; Kkl ’72 . (22)
Assigning particle masses to grid points in order to obtain a n \X”aj —Yklf

smooth density distribution is an art of its own (cf. Hockney . . : .
& Eastwood 1988). In principle, the particle mass could simPcPending on the number of grid cells, the direct summation ¢

ply be attributed to the single grid point next to its positio be prohibitively slow. In many circumstances of astropbgki

This “nearest arid point” (NGP) method is apbropriate for-na interest, fast-Fourier techniques can then be appliedrderdo
ticles near thegcentF;e of a(cell, %)ut particles npepar f:)ell blau'asp see how this \_/vorks, note that the deflecyon angle can beeritt
should be attributed to the cell and its neighbour(s) in otde as a convolution of the convergence) with a kernel

avoid boundary effects like density discontinuities. Nuowes S, 1 X

schemes for interpolating particles across cells have pen (X) = T—TW . (22)
posed. They are generally of the form

.
|
|
|

-
|
|
|
|

3
\

This allows the Fourier convolution theorem to be applied,
QRX) =3 W(X—X)Q(X), (17)  which holds that the Fourier transform of a convolution is th
[ product of the Fourier transforms of the functions to be con-

whereQ is the quantity to be interpolated onto a poine.g. the  Volved, hence N s
particle mass, the sum extends over all particles suffigient a(k) = K(kK)K(K) . (23)
close to the point of interest, andW(X — %) is a smoothing The Fourier transform of the kern&l can be determined and

or interpolation kernel depending on the separation velmtoer : ) : ; ;
tween the particle positio andX. The kernel is decomposed tabulated once. Using fast-Fourier techniques to detetiia

into three factors directions Fourier transform of the convergen&gk) requires the conver-
' gence to be periodic on the lens plane. In many cases, this
W(3X) = w(dxq )w(dx2)wW(dx3) , (18) can be safely assumed or arranged. Often, lens planes are con

) ) ] ) structed from large-scald-body simulations which have peri-
one for each dimension, theth of which depends only on the qdjc boundary conditions by design, or the lens is an isdlate
i-component of the separation vector. Interpolation mesfvath  gpject like a galaxy cluster, which can be surrounded by a suf
now be classified according to the kernel facto(8x) and their  ficiently large field for the convergence to drop near zerayeve
width. , ) where around the edges of the field. Fast-Fourier methodsispe

The “cloud-in-cell” (CIC) scheme uses the kernel factors  p the computation of the deflection angle considerably.
1-|5x|/h for [&x<h If necessary, derivatives of the deflection angle field can al
weic(8X) = { 0 otherwise , (19) be determined in Fourier space. Once the convergence has bee
Fourier transformed, one can employ the two-dimensionig-Po
son equation to compute the Fourier transform of the lensing

which implies that the particle is distributed over the foearest 1
potential,

grid points. A more elaborate scheme is the “triangular sdap

cloud” (TSC) method, which uses the kernel factors §= _é K, (24)
3/4—dx2/1? for |ox| <h/2 from which the Fourier transforms of the deflection angle and
Wrsc(X) = (3/2— |6x|/h)2/2 for h/2<|8x <3h/2 . the shear components can easily be determined,
0 otherwise . . 1
(200 G=—ikP, h=—3(G-K) D, L=—kieb. (25)



Relations like those and the exploitation of fast-Fourietmods factors. Poisson fluctuations in the particle number thusea
are particularly relevant for simulating gravitationahdééng by  convergence fluctuations whose variance is
large-scale structures.

Zs
>k D/ dz D4(z z5)AN(2) . (28)
3. LENSING BY LARGE-SCALE STRUCTURES 0

These fluctuations need to be compared with, and smaller than
3.1. Resolution Issues the convergence fluctuations due to large-scale struaitdnieh

i 2\1/2 ;

Obviously, the thin-lens approximation that we have beémgus are typically of order(k®) /2 ~ 5% for sources near redshift

; : e . unity and angular scales of ordef. 1According to Eqgs.[{26)
so far breaks down if one wishes to study gravitational legsi S22 . 1/2
by large-scale structures. The solution then is to covectme-  through [2B), themsshot noise&°k)~ < scales likedQ™/, thus
plete cosmic volume whose lensing effects one wants to sirf1€ requirement that the signal-to-noise ratio
ulate with simulation boxes stacked along the line-of-ig 1/2
project suitable slices on individual lens planes, and trmal- S _ (k?) (29)
tiple lens-plane theory for describing light propagation. N\ (&%)

The multiplicity of lens planes, and the general weakness of

lensing by large-scale structures, make questions of angntl  exceed a specified threshold translates into a lower limtihéo
mass resolution particularly relevant for cosmic lensipgy. in-  solid angledQ which can reasonably be resolved by the sim-
stance, lens planes close to the observer are typicallyypasr ulation. The smallness of thens cosmic convergencems =
solved because even small grid cells span a large solid aegle  (k2)%/2 implies that many particles need to be enclosed by the
the observer, and making grid cells smaller is not generally “cone” spanned byQ for the simulation to be reliable. The
acceptable solution because then the number of partictegige right panel of FiglZIR shows an example. Tings cosmic con-
cell becomes small, and the shot noise possibly unaccgptaltlergence in per cent and teise-to-signatatio are plotted as
large. However, lens planes near the observer are lessafficifunctions of angular scale. The noise level was adapted M-an
than lens planes approximately half-way to the source &caupody simulation with particle mass, = 6.8 x 10'°h*M,,. The
the lensing efficiency function is zero at the observer annla®  curves show that the noise-to-signal ratio drops belowyfit
redshifts and peaks in between. Yet, structures grow ones,ti  sources at redshift = 1 only if the angular resolution is lowered
thus the lensing efficiency function is skewed towards lowgdr  to > 5, while an angular resolution gf 0.8’ can be achieved for

shifts because structures are geometrically less effiteises, z; = 1000 (i.e. for weak lensing of the CMB; Pfrommer 2002).
but their density contrast keeps growing. By a related aspum

sources at very high redshifts do not require the entire cesm
logical volume between them and the observer to be filled with
lens planes because lens planes at very high redshift aneegeo Weak lensing by large-scale structures requires the cognhic
rically inefficient and have a low density contrast. The pefhel  ume to be split into multiple lens planes rather than a singke

of Fig.[I2 shows two examples for the lensing efficiency func¢for general reference on multiple lens-plane theory, stm&i-

tion times the linear growth factor, which is the relevarantity  der et al. 1992). The lens plane closest to the observer is the
combining structure growth with geometrical efficiency. ~ image plane which represents the observer's sky. A light ray

Similarly, the effective angular resolution of the simidatis iercing the image plane at a physical coordir?atds mutiply

dominated by the angular resolution of those lens planes nel :
the peak in the combined efficiency function, i.e, the proafic deflected orN lens planes and finally reaches the source plane

geometrical efficiency and linear growth factor. atthe physical coordinate

3.2. Multiple Lens-Plane Theory

The shot noise caused by the discretisation of mass into par- . Dee N
ticles is particularly important for studies of weak lertsiby A1) = —81+ Y Dis@(&), (30)
large-scale structures. Even in absence of density inhomo- D1 i=

geneities, shot noise leads to density fluctuations. They ne ) )
to be sufficiently smaller than the signal, i.e. the convecge where theD; andD;s are the angular diameter distances from the

fluctuations which cause weak lensing. observer to thé-the lens plane, and from theh lens plane to

—

In essence, this requirement also imposes a resolution I_imihe source, respectively. The light ray passes-theplane ag;,
Suppose we wish to quantify the weak-lensing signal within here it is deflected bt (;). Similarly, the; are determined
solid angledQ. The volume spanned BQ within redshiftsz by
andz+dzis D. -1

5 o e .
- = Di; a(&; 31
dDyprop &i(&r) D1€1+ i; ij a(&) , (31)

dz

aV(2) = 3QD?(2) ‘ dz, (26)

whereDj;j is the angular diameter distance from thih to the
hereD(z) and Dprop(2) th lar diamet q j-th lens plane.

whereD(z) and Dprop(2) are the angular diameter and proper : L

distances to redshift In absence of density inhomogeneities, Introducing angular coordinat@s= &; /D; yields

this volume element containdNdz) particles, with -1 Di; Ds

6;(6,) =0 B; 32
i(81) 1+i: DjDisq( i), (32)

: (27)
where we have introduced threduceddeflection angled =
wherep(z) is the mean matter density at redskifandmy is the  (Dis/Ds)d. We now define the matrices

mass of arN-body particle in the simulation. The contribution . .
to the lensing convergence by these particles has to be teeligh 2 — 06; o a4 (33)
I — = > |

by the effective lensing distancBef(z,z5), and by numerical 06, - 06
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FiG. 12.—Left panel The product of lensing efficiency function times the lingeswth factor for density perturbations is shown for twdefiént
source redshiftsgs = 3 andzs = 1000, respectively, the latter being relevant for graidtal lensing of the cosmic microwave background. The
growth factor skews the geometrical lensing efficiency tasdower redshifts. At redshift 5, the combined efficienagdtion drops to 10% of its
peak value fozs = 1000, implying that by far not the complete redshift rangeamq needs to be covered with lens planBsght panel The solid
curves show themscosmic convergence for sources at three different redshifber cent, the dashed curves the noise-to-signal ratérea in
anN-body experiment with particle mass, = 6.8 x 10'*°h—1 M. Both types of curve are plotted as functions of angularescal

Clearly, 4; is the Jacobian matrix of the lens mapping between 4. INVERSION TECHNIQUES

thei-th lens plane and the image plane, ttgis the Jacobian

matrix of the mapping between the source and image plandset us conclude with a brief discussion of inversion techeis
The goal is thus to determingy in order to obtain convergence, They are typically less demanding numerically, but the mesh
shear, and magnification for a light ray starting outint@diion  which have been developed for this purpose are interesting i
1. The ray-tracing equatiofi.{B2) implies the recursion retat their own right.

4.1. Shear Deconvolution

w4, (34) We have seen before in Eq§.24) ad (25) that convergence and
51 DjDis shear are related because they are both linear combinations
second derivatives of the scalar lensing potenfiialn Fourier
space, the relations are algebraic and can easily be codtaine
starting with 41 = 1, the identity matrix. In summary, the eliminate the Eourie_rtransforﬁlofthe potential. Transforming
deflection-angie fieldsi; on theN lens planes can be used toPack into configuration space, the convergence turns ow & b
construct the matrices; according to Eq.[(33), then EG_{34) convolution of the shear with a well-known kernel,
can be used to determine the lensing experienced by a light ra 17
starting out into any direction on the image plane. The leftel K(B) == / d2e’ [@1(9 —8)y1(6') + D2(6— 9’)y2(e/)} ,
in Fig.[I3 shows the total convergence experienced by ssurce .

atz; = 5 on a lens plane with a side length aR28°, obtained . (35)
from anN-body simulation (Pfrommer 2002). with s o
The right panel in FiglZ13 shows numerically determined D1(8) = - Ea D2(8) = — Ea (36)

power spectra for the effective convergence as functionswé
number, which is the Fourier conjugate variable to the angularhis is the classic Kaiser & Squires (1993) shear inversiprae
scale. The lines in this figure show the theoretically ex@ect tion. Its limitations have been discussed in detail and nexddo
power spectra. The agreement between the numerical and thegtisfaction by modifying e.g. the kernel components they
retical results is very good over a limited range of wave nerab  are not of interest for the discussion here (cf. Peter Sdensi
Once the wave numbers increase beyond the limit set by the gacture in this volume).

gular resolution, the simulated convergence fields lackguow A suijtable practical approximation of{35) using measured
and the numerical results fall below the theoretical onessis T galaxy ellipticitiese; (i = 1,2) is

happens at lowdrfor smaller source redshifts, because a fixe((i:]

angular scale, and thus wave numbecorresponds to smaller 1 N

physical scales at lower distances. On the loend, i.e. for K(B) ~ — Zi[a)lsl’i + Dogaj 37)
large structures, the errors on the numerically determposder i '

spectra increase because the number of independent modes in

the simulated convergence field decreases as the modeasacrewheren is the number density of lensed galaxies on the sky. In
This example should suffice to demonstrate that numerioal si practice, however, it turns out that an approximation |B&)(
ulations of gravitational lensing by large-scale struetishould would have infinite noise because of the random sampling of
be carefully designed to match their final purpose. the shear componenys by N galaxy ellipticitiesgj. This can



10-°

10-t0

power spectrum PK_(I)

10-1!

10-12

WO-WS | Ll Ll I \\\‘

100 1000 104 103
wave number |

FiG. 13.—Left panel Effective convergence on a field of28° side length for sources at redsthift= 5, obtained using multiple lens plane theory
on anN-body simulation.Right panel Effective-convergence power spectra measured with thee st of simulations (crosses), compared with
theoretical expectations (lines), for different sourcgstefts. The numerical results follow the theoretical @svery well within an intermediate
range of wave numbels At largerl, i.e. for small structures, the resolution limit of the siation is reached and the power spectra fall rather
steeply. At the lowk end, the noise increases because the number of modes imthiatsdbn decreases as the modes increase. The numerical
power spectra for low-redshift sources fall below the thetioal expectation at lowdrthan for high-redshift sources because a given angle, and
thus wave numbdr, corresponds to a larger physical scale at smaller dissainom the observer (from Pfrommer 2002).

be remedied by introducing a smoothed kernéinstead ofp,  The goal of the lens inversion is then to find a two-dimendiona

e.g. array jx of lensing potential values such that the ellipticities
, 02 02 and inverse magnifications caused by that potential at tee po
D= [1_ <1+ e_g) EXp(_e_g)] 2, (38)  tions 6; of the real galaxies optimally reproduce the measured

. ) ) . ellipticities and inverse magnifications. In other words po-
\;,nggée e_sl_r:S the angular $m00th|n?_scba|? (Selttzh& Schneidegential valuesp x have to be determined such as to minimise the
). The noise convariance matrix between the ConVeegenr%ean-square difference between the data vetamd the model

values at two different grid poin& and6; is then data vectoJ[ijk(%)],

<K(§ K (6 )> _0§ exp L _éj)z (39) 3N 2
i i))= - ; di — di (Y
4T[e§n 295 XZ(LIij) _ Zl{[ i CI)_(ZLIJJk)] } ’ (41)

= i
whereag is the scatter of the intrinsic galaxy ellipticities (van
Waerbeke 2000). This expression demonstrates that smgothiyhere the errors; can be estimated from the data themselves.
introduces correlations on the convergence map on the anguthe minimisation ofx? with respect to the potential values
scale®s, but the variance ok can become very high s is ;, can be done with any minimisation algorithm like, e.g. the
chosen too small. A careful balance between the local vegian jownhill simplex method. For large fields, the number of po-
and non-local correlations is necessary in order to arfv@ a tentjal values can become very large. In that case, corgugat

convergence map with the required properties. gradient methods are preferred, which make use of the fatt th
the derivatives ok? with respect to the jk are known analyti-
4.2. Maximum-Likelihood Lens Inversion cally. Such methods can speed up the minimisation suffigient

An entirely different approach to lens inversion uses thg?'rleggze)r' it feasible even for large potential arrays (cksBret

maximume-likelihood technique (Bartelmann et al. 1996)ctta

lensed background galaxyprovides a measurement of two el-

lipticity componentgeyj,€2) and its angular size. Comparing

the size of a galaxy behind a galaxy cluster to the average$iz 4.3. Maximum-Entropy Methods

unlensed galaxies of the same surface brightness, an éstima

of the inverse magnification of the lensed galaxy can be dériv The minimisation ofx? is a special case of the maximum-

ThusN galaxies provide al8-dimensional data vector likelihood technique for assumed Gaussian deviations ef th
. measured data around the model values. Improvements of the
d=(€11,821,r1,...,€1N,E2N,IN) - (40) maximum-likelihood technique can be derived starting from



Bayes' theorem,

-

P(dly

P(d)

which states that the probabiIiB(qJ|J) of finding the potential

W given the datal is proportional to the probabilit(d|y) of
obtaining the data given the potential, times the probai#ijy)

—

for finding the potential. The denominatB(d) is called the
evidenceand simply normalises Eq{U2)P() is called the
prior, quantifying anya priori information one has or assumes
on the potentialy, P(d|y) is called the likelihood, anB(y)|d) is
theposteriorprobability. The goal is now to maximise the latter,
which is equivalent to maximising the produRtd|y) P(y) of
likelihood and prior. If we have or can assume Gaussian noi
and a diagonal noise correlation matrix, the likelihooduesbs

to P(d|y) = exp(—x?/2).

)

—

P(yld) =

PW), (42)

It can now be shown that in absence of any further informag

tion, the best, i.e. least prejudiced, prior is the maximemiropy
prior,

P(y) O expla Sy, m)] , (43)
with the cross entropy
- < In i
Sy, )—i;lh—m—wlnﬁ, (44)

wherem is a model vector for the potential which can encod
expectations on the potential, or simply be chosen to b@wmif
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for all i. The potential array is then determined by maximising

exp(—x?/24a$), or equivalently by minimising

F=Zx’-0aS (45)

instead of the simplg? in Eq. [@1). The parameter can be

included into the minimisation. Bayesian theory implieatth

good approximation to the optimal choice foris determined

such that ~ 3N/2 at the potential minimury. The error co-

variance matrix for the potentigl is given by the inverse curva-
0°F

ture matrix ofF,
-1
oYioy; ) '

Maximum-entropy methods have been suggested and used
regularising shear-inversion techniques such that thgstial
resolution is adapted to the strength of the lensing sigrédife
et al. 1998; Seitz et al. 1998).

<(w—w>(w—w>T>%<

(46)

5. CONCLUDING REMARKS

for

Many numerical methods have been used for gravitationallen

ing studies which | was not able to cover during the limiteai
of the lecture. Among them are the hierarchical tree-codame
ods introduced into microlensing by Wambsganss et al. (199
and the methods for constraining cluster mass distribatiimom
multiple arc systems (e.g. Kneib et al. 1993; see also Jaah-P
Kneib’s presentation in this volume). Despite this unaabie

0

incompleteness, | hope to have given a flavour of how numeri-
cal methods can be used for lensing, and what the main problem
areas are.
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