Prospects for $H \rightarrow$ Invisible with VBF + MET for Snowmass

B. Diallo, A. Ketevi
On behalf of the analysis team

December 17, 2021
Brookhaven
National Laboratory

VBF+MET: Analysis overview

VBF signal selection

- Two jets with

$$
p_{T}\left(j_{1} / j_{2}\right)>80 / 50 \mathrm{GeV}
$$

- Small add. jet activity: $p_{T}\left(j_{3}\right)<25 \mathrm{GeV}$.
- Jets in opposite hemispheres.
- $\Delta \eta_{j j}>3.8$.
- $m_{j j}>0.8 \mathrm{TeV}$

EWK veto

- Veto on $e^{ \pm}$and $\mu^{ \pm}$

Multijets supression

- $M E T>200 \mathrm{GeV}$.
- $\Delta \phi_{j j}<2.0$.

Run 2 results

ATLAS Preliminary, $139 \mathrm{fb}^{-1}$

Process	SR	$Z_{\ell \ell}$	$W_{e \nu}$	$W_{\mu \nu}$	$W_{\ell \nu}$	Fake- $e \mathrm{CR}$
Tot. bg.	15490 ± 130	2065 ± 44	6288 ± 75	11130 ± 110	17420 ± 150	4300 ± 66
H (VBF)	647 ± 52					
H (ggF)	90 ± 43	Predicted signal for $\mathcal{B}_{\text {inv }}=13 \%$ (observed limit)				
H (VH)	0.81 ± 0.14					
Data	15511	2050	6323	11095	17418	4293

- Best observed (expected) limit 95% CL on branching ratio to invisible final states: 0.13 (0.13).
- Paper- draft https://cds.

Observed	Expected	$+1 \sigma$	-1σ	$+2 \sigma$	-2σ
0.132	0.132	0.183	0.095	0.248	0.071

Table 1: Expected and observed limits on $\mathcal{B}_{\text {inv }}$ for $\mathrm{H}=125 \mathrm{GeV}$ at 95% CL with $139 \mathrm{fb}^{-1}$. cern.ch/record/2789616/
B. Diallo, A. Ketevi On behalf of the analysis team

Study goal for Snowmass

Goal

- Projection of the current analysis in the LHC High Lumi (HL) condition.
- This required:
- A better understanding of signal and background.
- Good estimation of the systematics.

Ongoing Activities for HL-Projection study

- Smearing study.
- Limit projection.
- Multijet background estimate.
- The multijet backgrounds projection study is completed.
- The results have been already presented to the Physics Upgrade meeting: https://indico.cern.ch/event/1051932/.

Smearing study

Strategy

- Conduct a series of truth smearing to depict the detector in the HL-LHC condition.
- Truth level information is fed through a simulation of the upgraded detector.
\rightarrow By making use of the performance function for high pileup conditions: https://twiki.cern.ch/twiki/bin/viewauth/ AtlasProtected/UpgradePerformanceFunctions
- Objects that are smeared:
$\rightarrow e^{ \pm}, \gamma, \mu^{ \pm}, \nu, j e t s$.
- For validation we compare:
(1) Smeared and reconstructed variables.
(2) Smeared and reconstructed cut-flow.
- After validation \Rightarrow reweighting to 14 TeV .
- The smearing validation for VBF125 signal samples has been presented also to the physics upgrade meeting: https://indico.cern.ch/event/1093739/.

Systematic uncertainties projection to HL/LHC conditions

- Expected uncertainty on the integrated luminosity in Full HL-LHC ~ 1%.
- Expected up to $\sim 2 \%$ on the systematics uncertainty.
- Fit to data control region and signal region by scaling down with the projected systematics uncertainties.
- The projection of the systematics uncertainty can be fond in here: https://twiki.cern.ch/twiki/bin/viewauth/ AtlasProtected/HighLumiLhcSystematics2018

Limit projection to HL-LHC conditions

Approach

- Scaled background and signal prediction as a function of luminosity.
- Estimate the sensitivity at higher luminosity conditions.
- Two different cases are considered for now:
- data Stats only.
- data statistics $+0.5^{*}$ theo systematics.

Upper Limit on Higgs to Invisible

- For the $3000 \mathrm{fb}^{-1}$.
- With correlated theory + MJ: $1.9 \% \mathrm{mjj}$ shape fit \Rightarrow 2.1%, with reco systematics in the optimistic scenario.
- For the non-shape fit (bin-by-bin NFs), the 2.8\% $\Rightarrow 3.1 \%$ with reco systematics.

Thanks for your attention.

