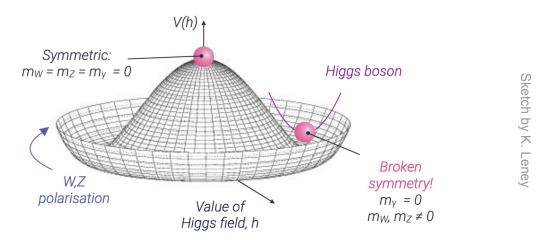


HH projections at future colliders

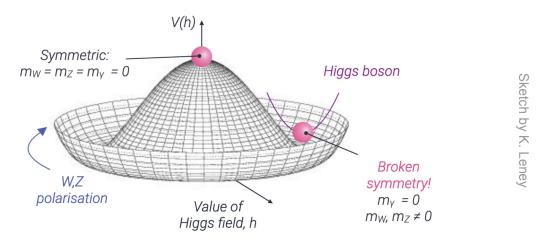

Elizabeth Brost

December 17th, 2021

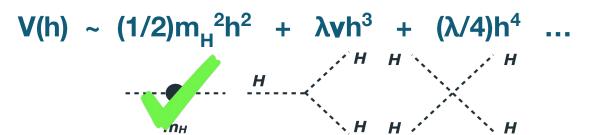

Electroweak symmetry breaking

Is the current minimum the TRUE minimum - and thus the universe is stable - or is there another, deeper minimum elsewhere, allowing for decay?

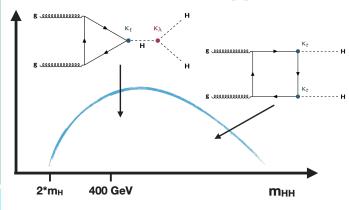
Electroweak symmetry breaking

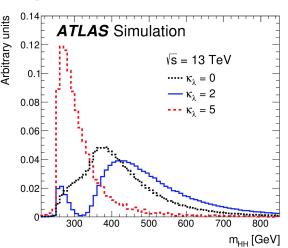


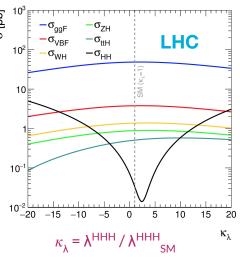
We want to measure the shape of the Higgs potential:


V(h) ~
$$(1/2)m_H^2h^2 + \lambda vh^3 + (\lambda/4)h^4 \dots$$

Electroweak symmetry breaking


We want to measure the shape of the Higgs potential:





Searching for Higgs pair production

- The HH cross section is very small in the Standard Model
 - \circ Two processes interfere destructively in HH production via gluon fusion: one involving a loop of top quarks, one involving the trilinear Higgs self-coupling, λ_{HHH}
- The cross section and kinematics of Higgs pair production vary widely with the value of the Higgs self-coupling:

HH projections for the HL-LHC

- Studying HH production is a major goal of the HL-LHC - it offers a direct probe of electroweak symmetry breaking
 - We would also like to constrain the value of the Higgs self-coupling
- We will need the full HL-LHC dataset (20x more data than we have now!) to measure the HH cross section
 - The Yellow Report projects that we'll get to ~4.0σ on the HH cross section with the HL-LHC dataset
 - Projections based on partial Run-2 analyses (some with dedicated studies)

Uncertainty on the value of the self-coupling: 50%

	Statistical-only		Statistical + Systematic		
	ATLAS	CMS	ATLA:	S CMS	
$HH o b \overline{b} b \overline{b}$	1.4	1.2	0.61	0.95	
$HH o bar{b} au au$	2.5	1.6	2.1	1.4	
$HH o b ar b \gamma \gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Combined			Combined	
	4.5	5		4.0	

CERN Yellow Report: Higgs physics at the HL-LHC and HE-LHC

What precision do we need on the Higgs self-coupling?

- Is 50% enough?
 - Depends which models you would like to study
- Motivates future colliders
 - "The goal for future machines beyond the HL-LHC should be to probe the Higgs potential quantitatively. This requires at least gold quality precision for the self-coupling parameter. ... achievable ... at the highest energy lepton machines (ILC₁₀₀₀ or CLIC₃₀₀₀) and hadron machines

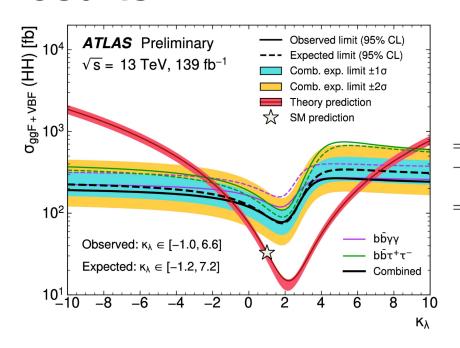
 Brookhave(FCC-hh)"

- Bronze (100%): sensitive to models with the largest new physics effects
- Silver (25-50%): can exclude a physical hypothesis with realistic deviations in the Higgs self-coupling
- Gold (5-10%): sensitive to a broad class of loop diagram effects... could complement measurements on new particles that could be discovered at the HL-LHC.
- Platinum (1%): sensitive to typical quantum corrections to the Higgs self-coupling generated by loop diagrams.

HH White Paper 2018 arXiv:1910.00012

New HL-LHC ATLAS HH projections

ATLAS submitted <u>one LOI</u> to Snowmass, summarizing the HL-LHC projections that we intend to update on the Snowmass timescale, including:


Higgs boson properties and couplings (EF01)

- Production modes: ggF, VBF, WH, ZH, ttH [13]
- Branching ratios and coupling parameters: $\gamma \gamma$, ZZ, W^+W^- , $\tau^+\tau^-$, $b\bar{b}$, $\mu^+\mu^-$, $Z\gamma$ [13,14]
- Mass: $H \to ZZ^* \to 4\ell$ [13]
- Differential cross sections in $\gamma\gamma$ and 4ℓ final states: Higgs boson $p_{\rm T}$, η , jet multiplicity, $p_{\rm T}$ of leading jet $[\overline{15}]$
- Probing the CP nature of the coupling to τ leptons [16]
- Sensitivity to differential measurements of $VH(b\bar{b})$ production
- $H \to c\bar{c}$ using charm tagging [17]
- Pair-production and self-coupling measurements: $HH \to b\bar{b}b\bar{b}, \ b\bar{b}\tau^+\tau^-, \text{ and } b\bar{b}\gamma\gamma$ [18]

New HH projections based on full Run-2 results planned for Snowmass!

New full Run-2 (139 fb⁻¹) ATLAS HH results

Compare to previous ATLAS-only HL-LHC projections (3000 fb⁻¹):

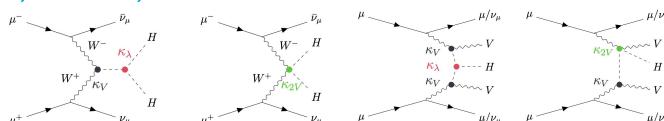
Scenario	2σ CI
Statistical uncertainties only	$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$
Systematic uncertainties	$-0.4 \le \kappa_{\lambda} \le 7.3$

ATL-PHYS-PUB-2018-053

What happens after HL-LHC?

- We expect an update on the HL-LHC projections
 - Full Run 2 results are being published approaching the SM limits on the selfcoupling
 - YR HL-LHC estimate was based on projections from early data analyses
 - CMS: HH and VBF HH for bbyy, WWyy, ttHH→bbbb
- Muon collider 25% (6%) at 3 (10) TeV

* arXiv:2004.03505	2.9-5.5%
depending on the systema	tic assumptions


	collider	single- <i>H</i>	HH	combined
	HL-LHC	100-200%	50%	50%
-	CEPC ₂₄₀	49%	_	49%
	ILC_{250}	49%	_	49%
	ILC_{500}	38%	27%	22%
	ILC_{1000}	36%	10%	10%
	CLIC ₃₈₀	50%	-	50%
	$CLIC_{1500}$	49%	36%	29%
	$CLIC_{3000}$	49%	9%	9%
	FCC-ee	33%	_	33%
	FCC-ee (4 IPs)	24%	_	24%
-	HE-LHC	=	15%	15%
	*FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

Muon collider @ Snowmass

- Snowmass <u>muon collider forum</u> recently formed (this year)
 - Muon collider simulation efforts ongoing since original Snowmass start, mostly focused on understanding the unique backgrounds (BIB) and developing reconstruction techniques
 - Planning at least one white paper with the muon collider simulation crowd, to summarize DELPHES physics studies
- Recently kicked off dedicated HH analysis effort, with colleagues from UCI,
 Princeton, Wisconsin, TRIUMF

HH @ muon collider

- Goal: Constraints on Higgs self-coupling at 3 benchmark energies (3,10,30 TeV)
 - HH→bbbb, HH→bb+XX (hadronic)
 - Simulation chain Whizard→Pythia→DELPHES up and running, producing signals and backgrounds, will smear objects using knowledge from BIB studies
- Questions we would like to answer
 - How much do we gain by adding extra channels to the dominant bbbb?
 - How do background modeling and jet reconstruction techniques impact the results?
- Leverage expertise from LHC HH searches
- Compare to <u>previous study</u> (25%, 6%, 2% @ 3,10,30 TeV)

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Backup

