Geant for electron-outgoing area

Jaroslav Adam

BNL

February 7, 2022

EIC Working Group Meeting

GETaLM: A generator for electron tagger and luminosity monitor

Ē

GE

. .

- Generator for bremsstrahlung photons and electrons scattered at small angles (bremsstrahlung or quasi-real photoproduction)
- Used in studies for luminosity monitor and low-Q² tagger
- Published as Comput.Phys.Commun. 272 (2022) 108251
- Configuration is given in a steering card
- Output is in HepMC3 or a ROOT tree (TClonesArray of TParticles)
- Works in eA for bremsstrahlung
- Effects of vertex spread and angular divergence are implemented
- Recently was extended for electron beam-gas
- Implemented entirely in Python3

	Computer Physics Communications 272 (2022) 108/251	
	Contents lists available at ScienceDirect	
	Computer Physics Communications	
SEVIER	www.elsevier.com/locate/opc	
ectron – proton and oslav Adam haven National Laboratory, Lyten, United	l ion collisions (7,57)	
T I C L E I N F O Notory: ed 25 May 2021 ed is revised form 15 November 202 ed 27 November 2021 ed 27 November 2021 wdi: votic breasstrationg suity	A STRACT The output data terminations and decime traging in decime return or into difficure in paining interpretent on which the planned entropy and the other approximate and fullishes found an observation in decime planned and the planned entropy and the planned and the planned in decime planned and decime in interactions as well as activated effectives in the memory hash particular to the planned entropy and the planned planned and the planned and the processors and an activation and the approximation in the given all populations. Which they decime used as a input to simulations of instrumentation for the proceed planned before decimes, humanys measurements, return targets, and the deformation of the proceed planned before decimes, humanys measurements, return targets, and the deformation of the proceed planned before decimes and the planned before the planned and the planned planned before decimes and the planned before the planned before the planned before the planned before the planned before the planned b	
nenna santnig	Pagera summary Pagera tria: Carlos juist aprogram Africa Integra (data ng/161 1522))produkt(41) GTL, Jacob juist aprogram Africa (2014) that and a summary and a summary and a summary and s	

Bremsstrahlung photons and electrons

- Based on double-differential cross section in photon energy and angle (Lifshitz textbook)
- Approximation neglecting proton or nucleus recoil
- Valid to a good extent according to a more detailed calculation (V. Makarenko)
- Kinematics for scattered electron is given by bremsstrahlung photon and original beam electron

Quasi-real photoproduction

- Electrons produced in photoproduction ep events
- Approximation at low- Q^2 as a function of x and y:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}y} = \frac{\alpha}{2\pi} \frac{1+(1-y)^2}{y} \sigma_{\gamma\rho}(W^2) \frac{1-x}{x}$$

- $\sigma_{\gamma p}$ is empirical photon-proton cross section
- Validation is done against Pythia6 at $10^{-11} < x < 1$, $10^{-4} < y < 0.99$, $Q^2 > 10^{-9}$ GeV² and W > 2 GeV:

Total cross section (µb)			
Energy (GeV)	Quasi-real	Pythia 6	
18x275	55.1	54.7	
10x100	44.8	40.9	
5x41	33.4	28.4	

• Scattered electron is found by kinematics relations

Effect of angular divergence

- The divergence is applied as random Gaussian rotations on particles 3-momenta
- Width of the Gaussians in xand *y*-directions is given by beam angular divertence
- Polar angles are smeared at very low values
- Electron Q^2 stops to give the true Q^2

Figure: Polar angle for bremsstrahlung photons

<u>वेल</u> (mb/mra

10

10

10

10

10

0 0.5

1.5

2.5

Cross section for scattered electrons

- Direct comparison between bremsstrahlung and photoproduction (Q² > 10⁻⁹ GeV²)
- Much larger cross section from bremsstrahlung
- Similar range in polar angles

Figure: Electron energy at 18x275 GeV

Figure: Electron polar angle at 18x275 GeV

Electron-outgoing layout

Geant for electron-outgoing area

Acceptance for bremsstrahlung photons for luminosity measurement

- Some of bremsstrahlung photons convert on Al exit window
- Conversion pairs are deflected in dipole magnet
- Up and down detectors are displaced vertically
- Original photon is detected in spectrometer by coincidence in up and down detectors

Tagging acceptance for scattered electrons in energy and polar angle

• Fraction of electrons reaching the tagger out of all generated quasi-real electrons

Figure: Tagger 1

Geant for electron-outgoing area

Tagging acceptance in polar angle and Q^2

• Fraction of electrons reaching the tagger out of all generated quasi-real electrons

Figure: Tagger 1

Figure: Tagger 2

Observed event rate per unit area on the front of tagger detectors

• Event rate R_A in mm⁻²s⁻¹ observed on surface area A in mm² is

$$\mathsf{R}_{\mathsf{A}} = \left(1 - e^{-rac{N_{b}}{N_{j}}\lambda}
ight) imes rac{1}{T_{b}} imes rac{1}{A}$$

- N_i is number of simulated individual ep interactions (bremsstrahlung or quasi-real)
- N_h is number of observed hits on surface area A out of the N_i simulated interactions
- *T_b* is bunch spacing in seconds
- $\lambda = \sigma \times \mathcal{L}_b$ is mean number of interactions per bunch crossing
- σ is interaction cross section in mb (bremsstrahlung or quasi-real) used for N_i simulated events
- $\mathcal{L}_b = 10^{-27} \times L_i \times T_b$ is luminosity per bunch crossing in mb⁻¹
- L_i is instantaneous luminosity in cm⁻²s⁻¹ from CDR Table 3.3
- The bunch spacing $T_b = \frac{l}{\beta \times c \times n_b}$ where l = 3834 m is collider circumference, βc is speed of the beam in ms⁻¹ and n_b is number of bunches from CDR Table 3.3

Event rates on tagger 1, 18x275 GeV

Figure: Quasi-real photoproduction, tagger 1

Jaroslav Adam (BNL)

Geant for electron-outgoing area

Event rates on tagger 2, 18x275 GeV

Summary

- Proposal studies were done with GETaLM generator and Geant4/DD4hep implementations
- Possibility to detect protons from bremsstrahlung in Roman Pots was investigated with tree-level calculation by V. Makarenko (created for HERA)
- Very large event rates on taggers are found for bremsstrahlung, first time there results are shown
- The rates will largely limit feasibility to tag photoproduction electrons
- Investigating possibilities for beam pipe geometry in electron-outgoing area
- Options include calorimeter + tracker or Roman Pot-like detector for electrons