# Anomalies and symmetric mass generation with Kähler-Dirac fermions 

Simon Catterall (Syracuse)



BNL February 2022

## Plan

- Staggered fermions: a puzzle
- Gapping fermions without breaking symmetries (SMG)
- Kähler-Dirac fermions and Dirac fermions. Discretization $\rightarrow$ staggered fermions.
- Gravitational anomaly for Kähler-Dirac fermions.
- Non-perturbative $Z_{4}$ anomaly $\rightarrow$ constraints on numbers of fermions.
- Massive Kähler-Dirac fermions in odd dimensions, induced gravity and topological insulators with Kähler-Dirac fermions.

Work with Nouman Butt, Arnab Pradhan and Goksu Can Toga 2101.01026, 1810.06117, 1806.07845

## (Reduced) interacting staggered fermions

$$
S=\sum_{x, \mu} \chi^{a}(x) \eta_{\mu}(x) D_{\mu}^{S} \chi^{a}(x)-\frac{G^{2}}{8} \sum_{x}\left[\chi^{a}(x) \chi^{b}(x)\right]_{+}^{2}
$$

$\chi^{a}(x): 4$ single component Grassmanns in fund of $S O(4)$
$\eta_{\mu}(x)=(-1)^{\sum_{i=1}^{\mu-1} x_{i}}$ and []$_{+}$projects to $(1,0)$ rep $S O(4)$
Describes 16 Majorana fermions in $D=3,4$ at $G=0$

## Symmetries

- $S O(4)$
- shift: $\chi(x) \rightarrow \xi_{\mu}(x) \chi(x+\mu)$ with $\xi_{\mu}(x)=(-1)^{\sum_{i=\mu+1}^{d} x_{i}}$
- $Z_{4}: \chi^{a}(x) \rightarrow i \epsilon(x) \chi^{a}(x)$ with $\epsilon(x)=(-1)^{\sum_{i} x_{i}}$

Symmetries prohibit all fermion bilinear terms.

## An exotic phase diagram in three dimensions

 $\left(U \sim G^{2}\right)$- $G \rightarrow \infty<\chi^{1} \chi^{2} \chi^{3} \chi^{4}>\neq 0$. Fermions massive. But condensate breaks no symmetries
- $G \rightarrow 0$. Massless fermions.

Must be at least 1 phase transition. But no order parameter !


Chandrasekharan et al. Phys.Rev.D 93 (2016) 8, 081701.

## Massive symmetric phase in four dimensions



Evidence for direct, continuous phase transition between massless and massive phases with no symmetry breaking (S.C et al. PRD98 (2018) 114514)

## A puzzle

- Previous work with lattice fermions had seen symmetry breaking bilinear condensate for $G \rightarrow \infty$. What feature of current model is different?
- What is the nature of the phase transition here ? - not of Landau-Ginzburg form ..


## Resolution

- Staggered fermions arise from discretization of Kähler-Dirac (KD) fermions
- Symmetric mass generation tied to (novel) anomaly cancellation for KD fermions
- Anomaly structure survives intact on lattice


## Fermion masses

Typically fermions acquire mass by breaking symmetries:

- Explicitly eg Dirac mass breaks axial symmetry.
- Spontaneously eg. chiral condensate $<\bar{q} q>\neq 0$ in QCD.
- Via anomalies eg $\eta^{\prime}$


## Does this exhaust the possibilities ?

No!
Fermion masses can arise without breaking global symmetries provided all 't Hooft anomalies vanish

Symmetric Mass Generation (SMG)

## 't Hooft anomalies

Imagine gauging global symmetry $G \rightarrow$ non-zero anomaly coeff $\mathbf{A}$ (triangle diagram)

> Anomaly is $R G$ invariant $\rightarrow$ requires massless particles in I.R with same A Options:

- Massless composite fermions
- G breaks spontaneously - massless Goldstone bosons

If we are to gap fermions in IR without breaking symmetries a necessary condition is that all 't Hooft anomalies must vanish in U.V

Thus SMG for staggered fermions requires cancellation of (new) anomalies for Kähler-Dirac fermions

## Kähler-Dirac fermions

An alternative solution to the problem of square rooting the Laplacian:

## Kähler-Dirac equation

$$
\begin{gathered}
(K-m) \Phi=\left(d-d^{\dagger}-m\right) \Phi=0 \\
K^{2}=-\square . \text { Note: } \Phi \text { collection of } p \text {-forms }(p=0 \ldots D) .
\end{gathered}
$$

From Kähler-Dirac field $\Phi=\left(\phi, \phi_{\mu}, \phi_{\mu \nu}, \ldots\right)$ form matrix

$$
\Psi=\sum_{p=0}^{D} \phi_{n_{1} \ldots n_{p}(x)} \gamma_{1}^{n_{1}} \gamma_{2}^{n_{2}} \cdots \gamma_{p}^{n_{p}}
$$

Can show that the Kähler-Dirac equation in flat space equivalent to:

$$
\left(\gamma^{\mu} \partial_{\mu}-m\right) \Psi=0
$$

In $D=4$ :
Four copies of Dirac equation where Dirac spinors correspond to columns of $\Psi$.

## Kähler-Dirac fermions continued ...

Representation in curved space

> Form: $(K-m) \Omega=0 \quad$ unchanged
> Matrix form: $e_{a}^{\mu} \gamma^{a}\left(\partial_{\mu} \psi+\left[\omega_{\mu}, \Psi\right]\right)-m \psi=0$ $\omega_{\mu}-$ spin connection and $e_{\mu}-$ frame with $e_{\mu}^{a} e_{\nu}^{b} \delta_{a b}=g_{\mu \nu}$

## Key feature:

Linear operator $\Gamma: \phi_{\mu_{1} \ldots \mu_{\rho}} \rightarrow(-1)^{p} \phi_{\mu_{1} \ldots \mu_{\rho}}$ with $\{\Gamma, K\}_{+}=0$ Generates exact $U(1)$ symmetry of massless action $\int \bar{\Phi} K \Phi$ :

$$
\begin{aligned}
& \Phi \rightarrow e^{i \alpha \Gamma} \Phi \\
& \bar{\Phi} \rightarrow \Phi e^{i \alpha \Gamma}
\end{aligned}
$$

Reduced Kähler-Dirac fermion

$$
\Phi_{ \pm}=\frac{1}{2}(1 \pm \Gamma) \Phi \text { with } S_{\mathrm{RDK}}=\int \Phi_{+} K \Phi_{-} \equiv \int \Phi^{\top} K \Phi
$$

## Lattice Kähler-Dirac fermions

- Approximate continuum by (oriented) triangulation $T$
- Place p-forms on p-simplices $\phi_{p} \rightarrow \phi_{\mathrm{p}-\text { simplex }}$
- Replace $\left(d, d^{\dagger}\right)$ by $(\delta, \bar{\delta})$ where boundary op. $\delta\left(a_{0} \ldots a_{p}\right)=\sum_{i=0}^{p}(-1)^{i}\left(a_{0} \ldots \overline{a_{k}} \ldots a_{p}\right) \leftarrow(p-1)$ simplices
- Discrete Kähler-Dirac equation:

$$
(\delta-\bar{\delta}-m) \Phi_{\mathrm{lat}}=0
$$

No fermion doubling! Lattice sols go smoothly into cont. (homology theory). Zero mode structure reproduced on lattice.

Valid for any (oriented) random triangulation of any topology.

## Relation to staggered fermions

Write continuum KD fermion matrix $\Psi$ as

$$
\Psi(x)=\sum_{\text {unit hypercube } \mathrm{b}} \chi(x+b) \gamma^{x+b}
$$

where $\gamma^{x}=\gamma_{1}^{x_{1}} \gamma_{2}^{x_{2}} \ldots \gamma_{D}^{x_{D}}$ and $b_{i}=0,1$ span unit hypercube on lattice. Replace derivatives by (symmetric) difference ops.

$$
\int \operatorname{Tr}\left(\bar{\Psi} \gamma_{\mu} \Delta_{\mu} \Psi\right) \rightarrow \sum_{x} \eta_{\mu}(x) \bar{\chi}(x) \Delta_{\mu} \chi(x+\mu)
$$

## Staggered action!

Staggered fermions correspond to discrete KD fermions on flat regular torus

## Quick recap so far

- Staggered fermions (special) discretization of KD fermions.
- KD fermions can be discretized on any random triangulation with any topology.


## In flat space

Kähler-Dirac fermions do not suffer chiral anomalies (vector-like)

## BUT

They do suffer from a new gravitational anomaly Remarkably this anomaly survives discretization

## Perturbative gravitational anomaly for $U_{\Gamma}(1)$

## Work on lattice

Under $(\Phi, \bar{\Phi}) \rightarrow e^{i \alpha \Gamma}(\Phi, \bar{\Phi})$

$$
\delta S_{\mathrm{KD}}(\bar{\Phi}, \Phi)=0
$$

But measure not invariant

$$
\begin{gathered}
D \Phi D \bar{\Phi}=\prod_{p} d \phi_{p} d \bar{\phi}_{p} \rightarrow e^{2 i N_{0} \alpha} e^{-2 i N_{1} \alpha} . . e^{2 i(-1)^{d} N_{d} \alpha} \prod_{p} d \phi_{p} d \bar{\phi}_{p} \\
=e^{2 i \chi \alpha} D \bar{\Phi} D \Phi \quad \chi \equiv \text { Euler }
\end{gathered}
$$

## Anomaly in even dimensions

Compactify $R^{2 n} \rightarrow S^{2 n}$. Breaks $U(1) \rightarrow Z_{4}$. Latter prohibits mass terms but allows for eg. four fermion ops.

Note
Lattice calc. agrees with continuum Example of QM anomaly for finite number dof ...

## Interactions for Kähler-Dirac fermions

Decompose a KD field into pair of reduced fields $\Phi^{a}, a=1,2$.
$Z_{4}$ invariant four fermion interactions via coupling to scalar:

$$
\begin{gathered}
\Phi^{a} \rightarrow i \Gamma \Phi^{a} \\
\sigma \rightarrow-\sigma \\
S=\int \sum_{a=1}^{2} \Phi^{a} K \Phi^{a}+G \sigma \Phi^{a} \Phi^{b} \epsilon_{a b}+\ldots
\end{gathered}
$$

Integrate fermions:

$$
\rightarrow \operatorname{Pf}\left(K \delta^{a b}+G \sigma \epsilon^{a b}\right)
$$

Real antisymmetric matrix. Pfaffian defined as product of eigenvalues in upper halfplane in some reference $\sigma=\sigma_{0}$.

Require it be a smooth function of $\sigma$
Possibility of sign change if eigenvalues flow thru origin

## A non-perturbative anomaly for Kähler-Dirac fermions

Let $\sigma=s \sigma_{0}$ where interpolates $s \in(1 \rightarrow-1)$.
Eigenvalues of near zero modes with $K \Phi=0$ are $\pm i s \sigma_{0}$
Change sign as $s=0^{+} \rightarrow 0^{-}$
$\rightarrow$ Pfaffian changes sign for 2 flavors of reduced Kähler-Dirac field
Therefore: $Z=\int D \sigma \operatorname{Pf}(K+\sigma \epsilon)=0$

To avoid this anomaly require eigenvalues to flow in pairs through origin. i.e $Z_{4}$ is anomalous unless number of (reduced) flavors is multiple of 4

In flat 4d reduced Kähler-Dirac field $\rightarrow 4$ Majorana spinors
So only theories possessing 16 Majorana spinors are consistent !
By cancelling $Z_{4}$ anomaly in U.V can achieve SMG for continuum KD fermions and hence for lattice staggered fermions

## Discrete anomalies

Recent work on global anomalies for discrete symmetries:
Cancelling 't Hooft anomalies for these symmetries gives new constraints on fermion content of consistent QFTs Equivalent to cancelling $Z_{4}$ anomaly of Kähler-Dirac !

| $D=1$ | Time reversal | 8 Majorana | 4 RKD |
| :---: | :---: | :---: | :---: |
| $D=2$ | Chiral fermion parity | 8 Majorana/Weyl | 4 RKD |
| $D=3$ | Time reversal | 16 Majorana | 4 RKD |
| $D=4$ | Spin- $Z_{4}$ symmetry | 16 Majorana/Weyl | 4 RKD |

eg. Spin- $Z_{4}$ symmetry

$$
\psi_{L} \rightarrow-i \psi_{L} \psi_{R} \rightarrow+i \psi_{R}
$$

$n_{L}, n_{R}$ number of L/R Weyl fermions
anomaly cancellation: $n_{L}-n_{R}=0 \bmod 16$

## Kähler-Dirac fermions in three dimensions

- Can integrate out massive 4 component Kähler-Dirac matrix fermions. Find CS theory:

$$
\begin{aligned}
& \quad S=\frac{1}{32 \pi} \frac{M}{|M|} \int_{M} d^{3} x \epsilon^{\mu \nu \lambda} \epsilon_{A B C D}\left(\Omega_{\mu}^{A B} \partial_{\nu} \Omega_{\lambda}^{C D}+\frac{2}{3} \Omega_{\mu}^{A B} \Omega_{\nu}^{C M} \Omega_{\lambda}^{M D}\right) \\
& \text { where } \Omega=\omega^{a b} T_{a b}+\frac{1}{\ell} e^{a} T_{a 4} \quad a<b=1 \ldots 3 \quad T_{A B}=\frac{1}{4}\left[\gamma_{A}, \gamma_{B}\right]
\end{aligned}
$$

## $T$ are generators of spin(4)

Forced by Kähler-Dirac nature. Naturally allows embedding of 3d

$$
(\omega, e)
$$

Reexpressing

$$
\rightarrow S=\frac{1}{32 \pi} \frac{M}{|M|} \frac{1}{\ell} \int d^{3} x \epsilon^{\mu \nu \lambda}\left(e_{\mu}^{a} R_{\nu \lambda}^{c d}-\frac{1}{3 \ell^{2}} e_{\mu}^{a} e_{\nu}^{b} e_{\lambda}^{c}\right) \quad \text { Witten }
$$

## Topological insulators with KD fermions

In presence of domain wall $M\left(x_{3}\right) \rightarrow M_{0} \operatorname{sgn}\left(x_{3}\right)$ massless 2d reduced KD fields appear on the wall which are coupled to $U(1)$ gauge field.

A would be gravitational anomaly is cancelled by anomaly inflow from the bulk gravitational theory

Gravitational anomaly renders theories of RKD inconsistent unless they form the boundary of a space of one higher dimension

Still suffer from discrete $Z_{4}$ anomaly which constrains $n_{F}=4 k$

## Summary

- Kähler-Dirac eqn. alternative to Dirac eqn. In flat space describes multiples of Dirac fermions.
- In curved space this equivalence not true. Kähler-Dirac fermions suffer from a (new) gravitational anomaly $U_{\Gamma}(1) \rightarrow Z_{4}$.
- This $Z_{4}$ suffers from a further global anomaly unless $n_{F}=4 k$. This implies 8 and 16 Majorana fermions in $d=2,4$.
- Anomaly depends on topology. KD fermions admit discretization that captures it exactly.
- Cancelling this global anomaly is necessary for SMG - explains staggered fermion results.
- In odd d massive Kähler-Dirac fermions yield Chern-Simons gravity theories. If $\partial M \neq 0$ anomaly inflow cancels off $U(1)$ gauge anomaly. Topological insulator !
- \$6 million question: can these features allow progress on lattice chiral gauge theories?

Thanks!

## (Lattice) chiral gauge theories ...

Lack a non-perturbative definition of a chiral gauge theory Weyl fields in complex representation of gauge group

- Naive lattice approach fails because of fermion doubling:

Nielsen-Ninomiya theorem always leads to equal numbers of left $\psi_{L}$ and right $\psi_{R}$ fields.

- Mirror models: try to give mass to say $\psi_{R}$ without touching $\psi_{L}$. Hard (impossible ?) to do.
- Perhaps SMG can be used. Invariant four fermion terms possible eg. $\left(\psi_{R}^{T} \Gamma_{\mu} \psi_{R}\right)^{2}$ with $\psi_{R}$ in 8 of $\operatorname{spin}(7)$. Generate cut-off scale mass for $\psi_{R}$ leaving $\psi_{L}$ massless.
- Must cancel off all 't Hooft anomalies - embed in reduced Kähler-Dirac field ? How to get $\gamma_{5}$ from 「 (twisted chiral symmetry)?

