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Plan

Staggered fermions: a puzzle
Gapping fermions without breaking symmetries (SMG)
Kähler–Dirac fermions and Dirac fermions. Discretization→
staggered fermions.
Gravitational anomaly for Kähler–Dirac fermions.
Non-perturbative Z4 anomaly→ constraints on numbers of
fermions.
Massive Kähler–Dirac fermions in odd dimensions, induced
gravity and topological insulators with Kähler–Dirac fermions.

Work with Nouman Butt, Arnab Pradhan and Goksu Can Toga
2101.01026, 1810.06117, 1806.07845
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(Reduced) interacting staggered fermions

S =
∑
x ,µ

χa(x)ηµ(x)DS
µχ

a(x)− G2

8

∑
x

[
χa(x)χb(x)

]2

+

χa(x): 4 single component Grassmanns in fund of SO(4)

ηµ(x) = (−1)
∑µ−1

i=1 xi and []+ projects to (1,0) rep SO(4)

Describes 16 Majorana fermions in D = 3,4 at G = 0

Symmetries
SO(4)

shift: χ(x)→ ξµ(x)χ(x + µ) with ξµ(x) = (−1)
∑d

i=µ+1 xi

Z4: χa(x)→ iϵ(x)χa(x) with ϵ(x) = (−1)
∑

i xi

Symmetries prohibit all fermion bilinear terms.
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An exotic phase diagram in three dimensions
(U ∼ G2)

G→∞ < χ1χ2χ3χ4 ≯= 0. Fermions massive. But condensate
breaks no symmetries
G→ 0. Massless fermions.

Must be at least 1 phase transition. But no order parameter !

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

U

0

1

2

3

4

5

6

7

8

χ1   

L=28

L=24

L=20

L=16

L=12

L=8

0.2 0.6 1.0 1.4 1.8

U

0.0

0.2

0.4

0.6

0.8

1.0

ρm

Chandrasekharan et al. Phys.Rev.D 93 (2016) 8, 081701.
4 / 22



Massive symmetric phase in four dimensions
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Evidence for direct, continuous phase transition between massless
and massive phases with no symmetry breaking (S.C et al. PRD98

(2018) 114514)
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A puzzle

Previous work with lattice fermions had seen symmetry breaking
bilinear condensate for G→∞. What feature of current model is
different ?
What is the nature of the phase transition here ? – not of
Landau-Ginzburg form ..

Resolution
Staggered fermions arise from discretization of Kähler-Dirac (KD)
fermions
Symmetric mass generation tied to (novel) anomaly cancellation
for KD fermions
Anomaly structure survives intact on lattice
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Fermion masses

Typically fermions acquire mass by breaking symmetries:
Explicitly eg Dirac mass breaks axial symmetry.
Spontaneously eg. chiral condensate < qq ≯= 0 in QCD.
Via anomalies eg η′

Does this exhaust the possibilities ?
No!

Fermion masses can arise without breaking global symmetries
provided all ’t Hooft anomalies vanish

Symmetric Mass Generation (SMG)
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’t Hooft anomalies

Imagine gauging global symmetry G→ non-zero anomaly coeff A
(triangle diagram)

Anomaly is RG invariant→
requires massless particles in I.R with same A

Options:
Massless composite fermions
G breaks spontaneously - massless Goldstone bosons

If we are to gap fermions in IR without breaking symmetries a
necessary condition is that all ’t Hooft anomalies must vanish in U.V

Thus SMG for staggered fermions requires cancellation of (new)
anomalies for Kähler–Dirac fermions
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Kähler–Dirac fermions
An alternative solution to the problem of square rooting the Laplacian:

Kähler-Dirac equation
(K −m)Φ =

(
d − d† −m

)
Φ = 0

K 2 = −□. Note: Φ collection of p-forms (p = 0 . . .D).

From Kähler-Dirac field Φ = (ϕ, ϕµ, ϕµν , . . . ) form matrix

Ψ =
D∑

p=0

ϕn1...np(x)γ
n1
1 γ

n2
2 · · · γ

np
p

Can show that the Kähler-Dirac equation in flat space equivalent to:

(γµ∂µ −m)Ψ = 0

In D = 4:
Four copies of Dirac equation where Dirac spinors correspond to

columns of Ψ.
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Kähler–Dirac fermions continued ...

Representation in curved space
Form: (K −m)Ω = 0 unchanged

Matrix form: eµ
aγ

a (∂µΨ+ [ωµ,Ψ])−mΨ = 0
ωµ − spin connection and eµ − frame with ea

µeb
νδab = gµν

Key feature:
Linear operator Γ : ϕµ1...µp → (−1)p ϕµ1...µp with {Γ,K}+ = 0
Generates exact U(1) symmetry of massless action

∫
ΦKΦ:

Φ→ eiαΓΦ

Φ→ ΦeiαΓ

Reduced Kähler–Dirac fermion
Φ± = 1

2 (1± Γ)Φ with SRDK =
∫
Φ+KΦ− ≡

∫
ΦT KΦ
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Lattice Kähler–Dirac fermions

Approximate continuum by (oriented) triangulation T
Place p-forms on p-simplices ϕp → ϕp−simplex

Replace (d ,d†) by (δ, δ) where boundary op.
δ(a0 . . . ap) =

∑p
i=0 (−1)i (a0 . . . ak . . . ap)← (p − 1) simplices

Discrete Kähler–Dirac equation:

(δ − δ −m)Φlat = 0

No fermion doubling! Lattice sols go smoothly into cont.
(homology theory). Zero mode structure reproduced on lattice.

Valid for any (oriented) random triangulation of any topology.
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Relation to staggered fermions

Write continuum KD fermion matrix Ψ as

Ψ(x) =
∑

unit hypercube b

χ(x + b)γx+b

where γx = γx1
1 γ

x2
2 . . . γxD

D and bi = 0,1 span unit hypercube on lattice.
Replace derivatives by (symmetric) difference ops.∫

Tr(Ψγµ∆µΨ)→
∑

x

ηµ(x)χ(x)∆µχ(x + µ)

Staggered action!
Staggered fermions correspond to discrete KD fermions on flat regular

torus
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Quick recap so far

Staggered fermions (special) discretization of KD fermions.
KD fermions can be discretized on any random triangulation with
any topology.

In flat space
Kähler–Dirac fermions do not suffer chiral anomalies (vector-like)

BUT

They do suffer from a new gravitational anomaly
Remarkably this anomaly survives discretization
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Perturbative gravitational anomaly for UΓ(1)
Work on lattice

Under (Φ,Φ)→ eiαΓ(Φ,Φ)

δSKD(Φ,Φ) = 0

But measure not invariant

DΦDΦ =
∏

p dϕpdϕp → e2iN0αe−2iN1α..e2i(−1)d Ndα
∏

p dϕpdϕp

= e2iχαDΦDΦ χ ≡ Euler

Anomaly in even dimensions

Compactify R2n → S2n. Breaks U(1)→ Z4. Latter prohibits mass
terms but allows for eg. four fermion ops.

Note
Lattice calc. agrees with continuum

Example of QM anomaly for finite number dof ...
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Interactions for Kähler–Dirac fermions
Decompose a KD field into pair of reduced fields Φa,a = 1,2.
Z4 invariant four fermion interactions via coupling to scalar:

Φa → iΓΦa

σ → −σ

S =

∫ 2∑
a=1

ΦaKΦa + GσΦaΦbϵab + . . .

Integrate fermions:
→ Pf

(
K δab + Gσϵab

)
Real antisymmetric matrix. Pfaffian defined as product of eigenvalues
in upper halfplane in some reference σ = σ0.

Require it be a smooth function of σ
Possibility of sign change if eigenvalues flow thru origin
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A non-perturbative anomaly for Kähler–Dirac fermions
Let σ = sσ0 where interpolates s ∈ (1→ −1).

Eigenvalues of near zero modes with KΦ = 0 are ±isσ0
Change sign as s = 0+ → 0−

→ Pfaffian changes sign for 2 flavors of reduced Kähler–Dirac field

Therefore: Z =
∫

DσPf (K + σϵ) = 0

To avoid this anomaly require eigenvalues to flow in pairs through
origin. i.e Z4 is anomalous unless number of (reduced) flavors is

multiple of 4

In flat 4d reduced Kähler–Dirac field→ 4 Majorana spinors
So only theories possessing 16 Majorana spinors are consistent !

By cancelling Z4 anomaly in U.V can achieve SMG for continuum KD
fermions and hence for lattice staggered fermions
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Discrete anomalies

Recent work on global anomalies for discrete symmetries:

Cancelling ’t Hooft anomalies for these symmetries gives new
constraints on fermion content of consistent QFTs

Equivalent to cancelling Z4 anomaly of Kähler–Dirac !

D=1 Time reversal 8 Majorana 4 RKD
D=2 Chiral fermion parity 8 Majorana/Weyl 4 RKD
D=3 Time reversal 16 Majorana 4 RKD
D=4 Spin-Z4 symmetry 16 Majorana/Weyl 4 RKD

eg. Spin-Z4 symmetry
ψL → −iψL ψR → +iψR

nL,nR number of L/R Weyl fermions
anomaly cancellation: nL − nR = 0 mod 16
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Kähler–Dirac fermions in three dimensions

Can integrate out massive 4 component Kähler–Dirac matrix
fermions. Find CS theory:

S =
1

32π
M
|M|

∫
M

d3xϵµνλϵABCD

(
ΩAB
µ ∂νΩ

CD
λ +

2
3
ΩAB
µ ΩCM

ν ΩMD
λ

)
where Ω = ωabTab + 1

ℓeaTa4 a < b = 1 . . . 3 TAB = 1
4 [γA, γB]

T are generators of spin(4)
Forced by Kähler–Dirac nature. Naturally allows embedding of 3d

(ω,e)

Reexpressing

→ S =
1

32π
M
|M|

1
ℓ

∫
d3x ϵµνλ

(
ea
µRcd

νλ −
1

3ℓ2
ea
µeb

νec
λ

)
Witten
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Topological insulators with KD fermions

In presence of domain wall M(x3)→ M0sgn(x3) massless 2d reduced
KD fields appear on the wall which are coupled to U(1) gauge field.

A would be gravitational anomaly is cancelled by anomaly inflow from
the bulk gravitational theory

⇓

Gravitational anomaly renders theories of RKD inconsistent unless
they form the boundary of a space of one higher dimension

Still suffer from discrete Z4 anomaly which constrains nF = 4k

19 / 22



Summary

Kähler–Dirac eqn. alternative to Dirac eqn. In flat space describes
multiples of Dirac fermions.
In curved space this equivalence not true. Kähler–Dirac fermions
suffer from a (new) gravitational anomaly UΓ(1)→ Z4.
This Z4 suffers from a further global anomaly unless nF = 4k .
This implies 8 and 16 Majorana fermions in d = 2,4.
Anomaly depends on topology. KD fermions admit discretization
that captures it exactly.
Cancelling this global anomaly is necessary for SMG - explains
staggered fermion results.
In odd d massive Kähler–Dirac fermions yield Chern-Simons
gravity theories. If ∂M ̸= 0 anomaly inflow cancels off U(1) gauge
anomaly. Topological insulator !
$6 million question: can these features allow progress on lattice
chiral gauge theories ?
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Thanks!
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(Lattice) chiral gauge theories ...

Lack a non-perturbative definition of a chiral gauge theory
Weyl fields in complex representation of gauge group

Naive lattice approach fails because of fermion doubling:
Nielsen-Ninomiya theorem always leads to equal numbers of left
ψL and right ψR fields.
Mirror models: try to give mass to say ψR without touching ψL.
Hard (impossible ?) to do.
Perhaps SMG can be used. Invariant four fermion terms possible
eg. (ψT

RΓµψR)
2 with ψR in 8 of spin(7). Generate cut-off scale

mass for ψR leaving ψL massless.
Must cancel off all ’t Hooft anomalies – embed in reduced
Kähler–Dirac field ? How to get γ5 from Γ (twisted chiral
symmetry) ?
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