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ABSTRACT. — We present a new method for solving explicitly the equa-
tions of motion of a binary system at the first post-Newtonian approxima-
tion of General Relativity. We show how to express the solution in a simple,
quasi-Newtonian form. The results are compared and constrasted with
other results existing in the literature.

RESUME. — Nous présentons une nouvelle méthode de résolution expli-
cite des équations du mouvement d’un systéme binaire i la premiére
approximation post-newtonienne de la Relativité Générale. Nous montrons
comment exprimer la solution sous une forme particuliérement simple,
quasi-newtonienne. Les résultats sont confrontés & ceux précédemment
obtenus dans la littérature. '

1. INTRODUCTION
The non-relativistic two-body problem consists in two sub-problems:
1) deriving the equations of orbital motion for two gravitationally inter-
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108 T. DAMOUR AND N. DERUELLE

acting extended bodies and 2) solving these equations of motion. In the
case of widely separated objects one can simplify the sub-problem 1) by
neglecting the contribution of the quadrupole and higher multipole moments
of the bodies to their external gravitational field, thereby approximating the
equations of orbital motion of two extended bodies by the equations of
motion of two point masses (located at the Newtonian centres of mass of the
extended objects). Then the sub-problem 2) can be exactly solved (cf. Appen-
dix A).

The two-body problem in General Relativity is more complicated ;
because of the non-linear hyperbolic structure of Einstein’s field equations
one is not sure of the « good » boundary conditions at infinity so that the
problem is not even well posed (see e. g. [18]). Moreover since in Einstein’s
theory the local equations of motion are contained in the gravitational
field equations, it is a priori difficult to separate the problem in two sub-
problems as in the non relativistic case where one can compute the gravita-
tional field as a linear functional of the matter distribution independently
of its motion. Furthermore, even when one can (approximately) achieve
such a separation and derive some equations of orbital motion for the
two bodies, these equations will a priori not be ordinary differential equa-
tions, but, because of the finite velocity of propagation of gravity, will
consist in some kind of retarded-integro-differential system. However all
these difficulties can be somehow dealt with if one resorts to approxima-
tion procedures and breaks the general covariance by selecting special
classes of coordinate systems (for some exact results on the « laws of motion »
rather than what we call here « equations of motion » see [Z6]).

Two physically different situations amenable to perturbation treat-
ments have been considered in the literature. The first one is the problem
of two weakly self -gravitating, slowly moving, widely separated fluid bodies
which has been treated by the so-called post-Newtonian approximation
schemes (for references to the abundant relevant literature, see e. g [30] [7]
[5]and [8]). The second case is the problem of two strongly self-gravitating,
widely separated bodies which has been treated by matching a (strong
field) « internal » approximation scheme (in and near the objects) to a
(weak field) « external » approximation scheme (outside the objects).
This has been done both for slowly moving objects, either black holes ([15])
or in general strongly self-gravitating objects ([23]), and for strongly
self-gravitating objects moving with arbitrary velocities ([3] [8]). In the
latter case one obtained equations of orbital motion in the form of a retarded-
integro-differential system which could however be transformed into
ordinary differential equations and which, when attention was restricted
to slowly moving bodies, were expanded in power series of v/c ([/1] [8 D.
When keeping only the first relativistic corrections to Newton’s law (first
post-Newtonian approximation), it turns out that the equations of orbital
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GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS I 109

motion of widely separated, slowly moving, strongly self-gravitating
objects depend only on two parameters (the « Schwarzschild masses »)
and are identical to the equations of motion of weakly self-gravitating
objects (When using in both cases a coordinate system which is « harmo-
nic » at lowest order). This result is in fact a non trivial consequence of the
structure of Einstein’s theory (« effacing principle » : see e. g. [8]) and does
not seem to be valid in most -other theories of gravity ([17] [35] [34]).

The sub-problem 1) having been thus attacked, and in fact solved at
the post-Newtonian level (as early as 1917 in the case of weakly self-gravi-
tating incompressible fluid balls (see [26])) it would seem that the sub-
problem 2) (solving the post-Newtonian equations of motion) would be
thoroughly understood and already fully treated in the literature. This
does not seem to be the case. Indeed most treatments work out only the
secular effects of the motion: the acceleration of the center of mass and
the precession of the periastron ([28] [22] [25] [6] [1] [31] [27]). The
reason for deriving only the secular effects caused by relativistic correc-
tions was that the precision of the observations of binary systems (and
even of our planetary system) was, for a long time, such that there was no
hope to detect the (quasi-)periodic relativistic effects. However the recent
discovery of binary pulsars and especially the extremely precise tracking
of the orbital motion of the Hulse-Taylor pulsar PSR 1913 + 16 (see
e. g [32]) have made it necessary to work out explicitly all the post-
Newtonian effects (both secular and periodic) in the motion. This has
been done ([33] [19] [20]) but the results have been expressed only in a
quite unwieldy form. The purpose of this article is then to present a method
for solving explicitly the post-Newtonian equations of motion which is
simple and systematic. Indeed we shall show that the post-Newtonian
motion (including secular and periodic effects) can be written down in a
quasi-Newtonian form (see § 7 below). In a sequel paper we shall apply
our results to the astrophysical problem of the « timing of binary pulsars » ;
our simple « quasi-Newtonian » solution will allow us to derive a corres-
pondingly simple formula giving the arrival times on Earth of radio-
pulses emitted by a pulsar in a binary system—like PSR 1913 + 16—
(see [13)).

Let us stress ‘that one considers here only the first post-Newtonian
periodic corrections to the motion. This is justified because the next order
relativistic corrections yield negligible periodic effects: indeed the present
precision in the measurement of the arrival times of the radio pulses from
the Hulse-Taylor binary pulsar is of the order of 20 usec which is of the
same order of magnitude as the periodic post-Newtonian corrections
(~ Gmpyear/c® ~ 7 psec). As for the second post-Newtonian periodic
corrections they are of order (v/c)®. Gmyy,/c* ~ 1073 usec and there-
fore completely unobservable. However when dealing with secular effects
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110 T. DAMOUR AND N. DERUELLE

one must consider also higher order approximations, as done recently
for the secular acceleration of the mean orbital motion caused by terms
coming from the second and a half post-Newtonian approximation
(see [9] [10)).

2. THE POST-NEWTONIAN CENTER OF MASS
AND THE LAGRANGIAN FOR THE RELATIVE MOTION

The (first) post-Newtonian equations of orbital motion of a binary
system constrain the evolution in (coordinate) time ¢ of the « positions »
r and r’ of the two objects—these « positions » represent the « centers of
mass » in the case of weakly self-gravitating objects (see e. g. [30]) and the
« centers of field » in the case of strongly self-gravitating objects (see [8]).
They can be derived from a Lagrangian which is a function of the posi-
tions r(t), r'(t), and velocities v(t) := dr/dt, v'(t) :== dv’/dt simultaneous in a
given harmonic coordinate system, and of two constant parameters the
(« Schwarzschild ») masses of the objects m, m’:

1

Len(r(®), ¥ (1), o(2), () = Ly + 2 L, 2.1a)
with ! 1 G’
mm

L. =— 2 T a2 + 2.1b

N3 mv* + 3 m'v R ( )

1 1 Gmm’ m+m'
Ly= gt + gmv + o [3”2”0’2—7(vv')—(Nv>(Nv')—G R ]
2.1¢)

where we have introduced the (instantaneous) relative position vector
R:=r — v and R:=|R|, N:= R/R ; where we have used the abbreviated
notations: v.v = |v|?* = v?, v. v = (v') for the ordinary euclidean scalar
products, and where G is Newton’s constant and ¢ the velocity of light.

The invariance, at the post-Newtonian approximation, and modulo
an exact time derivative, of Lpy under spatial translations and Lorentz
boosts implies, via Noether’s theorem, the conservation of the total linear
momentum of the system:

OLpy  OLpn
Ppy = R 2.2
PN p" + pw 2.2
and of the relativistic center of mass integral
Kpn = Gpn — 1Py (2.3q
1mv> 1 Gmm’
GPN=Z<m+§C*2—'§_Rc2 >l’ (2'3b)
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¥ denoting a sum over the two objects, (see e.g. [11] and [8] for a direct

proof of the link between the conservation of Kpy and the Lorentz boosts).
By a Poincaré transformation it is possible to go to a post-Newtonian

center of mass frame where Ppy = Kpy = 0. In this frame one has:

I wm — m’) GM
=R ' R 2.4
" * 2M32¢? < R (2.44)
7 wm — m') GM
= - R4+ ——— (V2R 2.4b
e TV < R (2.40)

where V:=dR/dt=v—v’ is the instantaneous relative velocity, M:=m+nm’
the total mass and p := mm’/M the reduced mass. The problem of solving
the motion of the binary system is then reduced to the simpler problem
of solving the relative motion in the post-Newtonian center of mass frame.
For the sake of completeness, let us write down these equations of motion,
derived from (2.1), and where, after variation, the positions and velocities
are replaced by their centre of mass expressions (2.4):

dV_ GM_ GM {N[GM

av_ VN 442
at RZ 2R g 4+

— V21 + 3v) + %V(NV)Z] +(@4- 2v)V(NV)} (2.5)

where we have introduced the notation v:= u/M = mm’'/(m + m')?
0<v<1/4).

At this point it is worth noticing that in spite of the fact that it is in general
incorrect to use, before variation, in a Lagrangian a consequence, like
eq. (2.4), of the equations of motion, which are obtained only after varia-
tion, it turns out that the relative motion in the post-Newtonian center
of mass frame, eq. (2.5), can be correctly derived from a « relative Lagran-
gian » obtained by replacing in the total Lagrangian (divided by p)
g~ 'Lpn(r, 7', v, v’) the positions and velocities by their post-Newtonian
center of mass expressions obtained from (2.4) and that moreover it is
surprisingly even sufficient to use the non-relativistic center of mass expres-
sions:

Vol. 43, n° 1-1985.
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112 T. DAMOUR AND N. DERUELLE

The proof goes as follows. Let us introduce the following linear change of
spatial variables in the post-Newtonian Lagrangian Len(r— v, dr/dt, dr'/dt) :
(r, ) - (R, X) with R:=r — ¢ and X:= (mr + m'r')/M, that is:

r=rn+X 2.7 a)
F=ry+X (2.7b)
which implies (denoting dX/dt =: W):
v=ovy+ W (2.7¢)
vV =vy+W 2.74d)

Expressing Lpy = La(r — ¥, 0,0) + (1/¢*)Ly(r — ¥, v, v'), given by eq. (2. 1)
in terms of the new variables one finds:
1 1 GuM 1 A%
Lon= =MW? 4 - a2+ 20 4 CL(RE 4w, - Evew) @.8)
2 2 R c m m’
Hence one obtains as a consequence of the equations of the post-Newtonian
motion:

“u OR
=(i_ii)[lvz+9ﬁ+_14 (R ow —ﬁv+w>] 2.9)
R diov)|2 R u? \"m o ow '

where in the last bracket we have discarded 1/2 MW? which gives no contri-
bution. The first two terms in the RHS of eq. (2.9) yield the Newtonian
relative motion. We wish to evaluate the relativistic corrections to the
relative motion: (§/0R)(L,/uc?) in the post-Newtonian centre of mass
system. Now L, is a polynomial in the velocities and therefore a polyno-
mial in W, and from eq. (2.4) one sees that in the post-Newtonian centre
of mass frame W = O(1/c?). Therefore as §/0R does not act on W, we see
that the contributions coming from W to the RHS of eq. (2.9) are of the
second post-Newtonian order O(1/c*) that we shall consistently neglect
throughout this work. In other words one obtains as a consequence of the
equations of the post-Newtonian motion in the post-Newtonian centre of
mass system:
(1 _, GM 1 uv uv : 4
(5R[2V + R + o L2<R, ) m’)} =0(1/c*) (2.10)
This shows that the equations of the relative motion in the post-Newtonian
centre of mass frame derive from the following « relative Lagrangian »:
02

1. GM 1 vV oouv
LR V) =SV + =+ —L2<R,%, - %) 2.11)
u
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GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS I 113

which happens to be obtainable by replacing in the full post-Newtonian
Lagrangian, see eq. (2. 8) above, X and W by zero, i. e. the original variables
by eq. (2.6) (and by dividing by u).

The explicit expression of L}y reads:

GM 1 V4
LR(R, V) = —V2+T g1

+ SM [(3 + V)V2 + (NV)? — 94] 2.12)
2R(? R ’

The Lagrangian (2. 12) was obtained by Infeld and Plebanski [22] although
without a clear justification (see appendix C).

The integration of the equations of motion (2.5) can be done in several
different ways. A standard approach: Lagrange’s method of variation of
the osculating elements, is discussed in Appendix B. The Hamilton-Jacobi
equation approach which takes advantage of the existence of the post-
Newtonian relative Lagrangian is the route which has been taken by Landau
and Lifshitz [25] who worked out only the secular precession of the peri-
astron. Another approach, based on the Maupertuis principle, which
reduces the post-Newtonian problem to a simple auxiliary Newtonian
problem is presented in Appendix C. However, in order to fully describe
the motion, it is most convenient to use a more straightforward approach,
which follows closely one of the standard methods for solving the non-
relativistic two-body problem (see Appendix A) and which consists in
exploiting the symmetries of the relative Lagrangian L}. The invariance
of Ly under time translations and space rotations implies the existence of
four first integrals: E = V.0LE/0V — L8 and J = R x 0L}y/0V:

1, GM V4 M GM:|
- _V2_ — V2 NV)2+ — 2.13
E 2V R + - (1 3v)— = 2R [(3+v) +v(NV)*+ R ( )
\'& GM
J=RxV|14= (1 3v) +(3+v) (2.14)

It is straightforwardly checked that these quantities coincide respectively
with u~! times the total Noetherian energy and the total Noetherian
angular momentum of the binary system when computed in the post-
Newtonian center of mass frame (see e.g. [33]).

Eq. (2.14) implies that the motion takes place in a (coordinate) plane,
therefore one can introduce polar coordinates R, 6 in that plane (i. e. there
exists a spatial rotation after which one can write R,=R cos 6, R,=R sin 6,
R, = 0). Then starting from the first integrals (2.13)~(2.14) and using the
identities: V2 = (dR/dt)*> + R*(d0/dt)?, |R x V| = R2d0/dt, (NV) = dR/dt,

Vol. 43, n° 1-1985.



114 T. DAMOUR AND N. DERUELLE

we obtain by iteration (in these and the following equations we consistently
neglect terms of the second post-Newtonian order O(1/c%)):

dR\?

=) =A+2BR+CR? + DR’ 2.15)
do
— = HR” + IR? (2.16)

where the coefficients A, B, C, D, H, I are the following polynomials in E
and J:=|J|:

3 E
A=2E<1 +20v- 1);> 2.17a)
E
B=GM<1 +(7»—6)?> (2.17b)
E 2 2
C= —JZ<1.+ 2(3v—1)?>+(5v—'10) S @179
D = (= 3v + 8§)GMJ¥/c? 2.17d)
H= J<1 + Gy — 1);EE> 2.17¢)
I=(Qv—4GMJc? 2.17 f)

3. THE POST-NEWTONIAN RADIAL MOTION

The relativistic relative radial motion, i.e. the solution of eq. (2.15)
can be very simply reduced to the integration of an auxiliary non-relativistic
radial motion (i. e. to eq. A.10). Indeed let us consider the following change
of radial variable:

R =R + D/2C, 3.1

where C, is the limit of C when ¢™* — 0(C, = — J?). In ordinary geome-
try the transformation which is expressed in polar coordinates by the
equations: R’ = R + Const., 8" = 0, is called a « conchoidal transforma-
tion ». We shall use systematically in the following such « conchoidal »
transformations. Taking into account the fact that D is O(1/c?) and that
we can consistently neglect all terms of order O(1/c*) we find that replacing
eq. (3.1) in eq. (2.15) leads to:

dR\? 2B C
i IR N N 3.2
<dt> TR (3-29)
with _
C = C - BD/C, (3.2b)
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The solution of eq. (3.2) in parametric form is recalled in Appendix A.
In the case of quasi-elliptic motion (E < 0; A < 0) (the quasi-hyperbolic
and quasi-parabolic cases will be dealt with below), R is a linear function
of cos u, u being an « eccentric anomaly » and the same is true of
R =R + D/2C,. We then obtain the post-Newtonian radial motion in
quasi-newtonian parametric form (¢, being a constant of integration):

nt —ty) =u—e sinu (3.3)
R = ag(l — eg cos u) (3.4
with "
- A
o B) (3.5a)
A BD) |*/?
B+ D
a = - — —_—
R At (3.5¢)
AD
eR= (1 +F(:O>et (35d)

The main difference between the relativistic radial motion and the non-
relativistic one is the appearance of two different eccentricities: the « time
eccentricity » e, appearing in the Kepler equation (3.3) and the « relative
radial eccentricity » ey appearing in (3.4). Using eq. (2. 17) we can express ag,
er, ¢, and n in terms of E and J:

GM 1 E
ar=— - [1—§(v—7)?] (3.64)
2B s 15\ET., G*M2 )12
2E 7 17\E G*M? |12
(—2BP2[ 1 E

It is remarkable that a well-known result of the Newtonian elliptic
motion is still valid at the post-Newtonian level: both the relative semi-
major axis ag and the mean motion n depend only on the center of mass
energy E. The same is true for the time of return to the periastron (« period »):
P :=2x/n. (The corresponding results of Spyrou [37], his egs. (26-28), are

Vol. 43, n° 1-1985.



116 . T. DAMOUR AND N. DERUELLE

incorrect, see below). As a consequence we can also express 1 in terms of ag:

<GM>1/2 - GM (—9
n=|—-— —
ap 2agc? )

Let us note also the relationship between e, and eg:

e E
Z=1+3v-85
e, ¢

(43 ’ " GM 4 3
— — —_— _v
e, agc? 2

4. THE POST-NEWTONIAN ANGULAR MOTION

3.7)

(3.84q)

(3.8 b)

The relativistic angular motion, i. e. the solution of eq. (2.16) can also
be simply reduced to the integration of an auxiliary non-relativistic angular
motion, i.e. to eq. (A.11). Indeed let us first make the following O(1/c?)

conchoidal transformation:

R =R +I2H
which transforms eq. (2. 16) into:
d H
i R

where R can be expressed as:

R = a(l — 2 cos u)
with-

4 =ag — I2H

- 1 Al

¢=\" " 2BH

The time' differential is given from eq. (3.3) by:

dt = n~1(1 — e, cos u)du
Hence we get:

d@:i 1—ecosu

— ———————du
na? (1 — € cos u)®

“4.1)

4.2)

4.3)
4.4)

4.5

(4.6)

4.7)

As can be seen from eq. (3.8) and (4.5) ¢, and ¢ differ only by small terms
of order 1/c*. Now if we introduce any new eccentricity say e, also very
near e, so that we can write: e, = (e, + €)/2 + &, €5 = (e, + €5)/2 — ¢, with

¢ = O(c™?) then:

+
(1 — e cos u)(1 — ey cos u) = <1 _aT

2
cos u> — &2 cos’u (4.9)
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Therefore if we choose e, such that the average of e, and e, is equal to 2,
i.e. eg:=2e — ¢, we have:

1—ecosu

1
= 1/c* 4.
(1 — € cos u)? l—eocosu+o(/c) 4.9)

which transforms eq. (4.7) into a Newtonian like angular motion equation
similar to eq. (A.14 a):

>

H du
= —5 —— (4.10)
na“1 — ey, cosu
which is easily integrated:

0 — 6o = KA, () 4.11q9)

0o being a constant of integration and where for the sake of simplicity
we have introduced the notations:

1 1/2
A.(u) = 2 arctan [(1 + e> tan g] 4.11b)
— e

K == H/[na(1 — €})”] 4.11¢c)
From eq. (4.5) and (3.5d) and the definition of e,:=2¢ — ¢, we have:

AD Al AD Al
cef1+ 22 A (14 i 4.12
% e‘( *BC, BH) e“< 2BC, BH) (4.12)

then, as shown by straightforward calculations:

el 1+ Gy
ey = ¢
0 k 2agc?

E , G2M2 1/2
el (D)l o] e

J
K= ( G2M2/c2)1/2 (4 14)
As is clear from eq. (4.1, 4.3) the radial variable R reaches its successive
minima (« periastron passages ») for u = 0, 2z, 4n, ... The periastron
therefore precesses at each turn by the angle A6 = 2n(K — 1), which if
J>» GM/c reduces to the well-known result ([28]):
2042

G*M
A = 61— + O(1/c*) =

and

and

+ O(1/c%). 4.15)

6nGM
ag(l — eg)c?
5. THE POST-NEWTONIAN RELATIVE ORBIT

Contrarily to the usual approach which derives first the orbit by eli-
minating the time between eq. (2.15) and eq. (2. 16) before working out the
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118 T. DAMOUR AND N. DERUELLE

motion on the orbit we find the orbit by eliminating u between eq. (3.4)
and eq. (4.11). In order to simplify the formulae we introduce the nota-
tion f for the polar angle counted from a periastron and corrected for the
periastron precession i. e.:

0 — 0,
f= < (5.1
We must eliminate u between:
R = ag(l — eg cos u) (5.2
and
f =AW (5.3

For doing this it is convenient to play a new « conchoidal » trick on R and
write:

R = e—RaR(l — ey COS u) + aR<1 - -e—R> 5.4

€9 €g
From the definition of A, (u) we have:
1 — é? 1 — e?

1 + ey cos A, (u) - 1+ egcos f

1—eycosu= (5.5

Moreover we find from eq. (4.13) that the radial displacement appearing
in eq. (5.4) is simply:

er Gu
1——=)=__" 5.6
aR( ee) 2¢? -6
so that we find the polar equation of the relative orbit as:
Gu 1—¢ Gu
R = Sy - v L= 5.7
(aR 2c2> 1+ eycos f * o G-

This equation means that the relative orbit is the conchoid of a precessing
ellipse, which means that it is obtained from an ellipse: R’ = p(1 +e cos ")~ *
by a radial displacement R = R’ + const. together with an angular homo-
thetic transformation: 6 = (const.). &’. The result (5.7), already written
down by Infeld and Plebanski [22], has often ({33] [3/]) been written in
the more complicated form:

Pr
R = +0O|— 5.8
1 +e;cos f+ ey cos2f <e4> ©-8)
where :
i Gu
= __p2 LA 5.9

er 4eR aR(l _ 8[2{)02‘ ( a)
ef=eR(1+ezf) (5.9b)
pr =1+ ezp)a(l — eg) (5.99)
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As noticed by Esnault and Holleaux [20], the corresponding results
of Spyrou [37] (his egs. (24) (26) (27) and (28)) are incorrect because
Ruin = Pl + €7 + e55) 7! but Ry = p,(1 — e, + e,,)” " ; this vitiates his
results for ag (his a) and the « period », as well as his statement that
/e = e; + ey, can be used as a usual Newtonian eccentricity.

Let us finally note that the relative orbit can also be written as:

3 ag(l — €f)
1+ egcos f’ (5.104)
with
f'=f + 2eys/er) sin f (5.10b)

6. THE POST-NEWTONIAN MOTIONS OF EACH BODY

The relativistic motions of each body are obtained by replacing the
solution for the relative motion, t(u), R(u), 8(u), in the post-Newtonian
center of mass formulae eq. (2.4). We see first that the polar angle of the
first object (of mass m) is the same as the relative polar angle and that the
polar angle of the second object (mass m’) is simply 6 + =. Therefore it is
sufficient to work out the radial motions. From eq. (2.4) we have by replac-
ing V2 in the relativistic corrections by 2GM/R +2E ~2GM/R — GM/ay:

m Gu(m — m') (1 R)

ag

=—R+ 6.1
Y M2 ©.1)
(and similar results for the second object by exchanging m and m’) which
shows remarkably enough, that r can also be written in a quasi-Newtonian
form:

r=all — e, cos u) 6.2
with
ml
a, = Man (6.3a)
Gm(m — m')

. = ) B 6.3b
¢ 8R|: 2MaRC'2 :| ( )

and where as before:
nt — ty) = u — e, sin u (6.40a)
0 — 0, = KA., (v (6.4 b)

The orbit in space of the first object can be written down by using the
same method as in the preceding section for the relative orbit:

r=5"a(1 — ey cos u) + a,<1 —ﬁ> 6.5)
e,

0 €y
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One finds:
L& Gm*m’ 6.6
all ——})=—— .
e 2M?c? )
hence we find also that the orbit is the conchoid of a precessing ellipse:
Gm?m’ 1 — é? N Gm?*m’ 6.7)
r=\a — .
2M?c? (0 — 90> 2M?2¢?
1+ ¢4 cos

7. RECAPITULATION

Gathering our results for the elliptic-like (E < 0) post-Newtonian motion
in the post-Newtonian center of mass frame, we have:

nit—ty) =u—esinu (7.1a)
1 1/2
0 — 0, = K x 2 arctan [( b eg> tan E:I (7.1b)
— € 2
R = ag(1 — eg cos u) (7.1¢)
r=a(l — e, cos u) (7.1d)
" =a.(l — e, cos u) (7.1e)
with

__M 1 1 7 E 7.2

ar = 5B E(V— )c2 (7.2q)
(= 2E)*? 1 E}

=———|1--(v-15— 7.2b
"T oM PR (7.2b)

and K, e, ey, ey, e, a,, ¢,, a,, given in terms of the total energy and total
angular momentum by unit reduced mass in the center of mass frame,
E and J, by eq. (4.14) (3.6¢) (4.13) (3.6 b) (6.3 b) (6.3 a) and the inter-
change of m and m'’ for e,, a,. Egs. (7.1) are very similar to the standard
Newtonian solution of the non-relativistic two body problem (see Appen-
dix A).

The simplest method for obtaining the post-Newtonian motion in the
hyperbolic-like case (E > 0) consists simply in making in eq. (7.1) (7.2),
the analytic continuation in E from E < 0 to E > 0, passing below E = 0
in the complex E plane and replacing the parameter u by iv (i2 = — 1).
The proof that this yields a correct parametric solution of the motion
consists simply in noticing on one hand that K and the various eccentricities
are analytic in E near E = 0 and that if one replaces the parametric solu-
tion (7.1, 7.2) (and the corresponding expressions of e, ey, ex, e,, a,, €,, a,
in terms of E and J) in (dR/dt)?> and in (d6/dt)* one finds that eq. (2.15)
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and the square of eq. (2.16) are satisfied identically, modulo O(1/c*), and
that the resulting identities are analytic in E and u and are therefore still
satisfied if E is continued to positive values and u to purely imaginary
ones. One finds:

1t — ty) = e, sinhv — v (7.3a)

0 — 6, = K2 arctan l:(ea + 1>1/2 tanh B:l (7.3b)
eg— 1 2

R = Gg(eg coshv — 1) (7.3¢)

r = afe, coshv — 1) (7.34d)

r’ = a,.{e, coshv — 1) (7.3¢)

where K, e,, ey, e, €, €, are the same functions of E and J as before but
where it has been convenient to introduce the opposites of the analytic
continuations of the semi-major axes:

GM 1 E
Gr=—|1-=(v-7~ 7.4
ar 2E[ S0 )cz] (7.4)
(and @, = m'azy/M) and the modulus of the analytic continuation of the

mean motion: "
(2E) 1 E]
= 1—-(wv-=15—=]. 7.5

GM iR 7-3)

N

Then the quasi-parabolic post-Newtonian motion (E =0) can be obtained
as a limit when E — 0. For instance let us start from the quasi-elliptic

solution eq. (7.1) and pose:
— 2E\'?
U= (W) x (7.6)

Taking now the limit E — 07, holding x fixed, yields the following para-
metric representation of the quasi-parabolic motion:

1 G*M? 1
t—t0=m5|:<J2+(2—2v) ~ >x+§x3] (7.7 a)
0 — 0, = T x
— 0y = % = 6G2M2/cD)1 2 2 arctan 7 — 6G?ME/ )2 (7.7b)
G*M?
R=——1J -6 2 7.7
2GM[ HO-6—73 +x] (7.7¢)

Moreover let us point out that our solutions (for the three cases E < 0,
E > 0,and E = 0) have been written in a form suitable when J* > 6(GM/ ).
However the validity of our solutions can be extended to the range
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J2 < 6(GM/c)? by first replacing in the solutions for the angular motion
—eq. (7.1b, 7.3b, 7.7 b)—the function arctan by — arccotan (at the
price of a simple modification of 6,) and then by simply making an ana-
Iytic continuation in J. One ends up with an angular motion expressed
with an argcoth which can also be approximately replaced by its asymptotic
behaviour for large arguments: argcoth X ~ 1/X. The case of purely
radial motion (J = 0) is also obtained by taking the limit J — O (at u, v or
respectively x fixed).

Finally a parametric representation of the general post-Newtonian
motion in an arbitrary (post-Newtonian harmonic) coordinate system is
obtained from our preceding centre-of-mass solution by applying a general
transformation of the Poincaré group (x"* = Lgx? + T9).
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APPENDIX A

THE NEWTONIAN TWO-BODY PROBLEM :
A COMPENDIUM

The Newtonian equations of motion for two point-masses m and m’ derive from the
Lagrangian:
L ( ’ I) 1 2 1 74,02 + Gmm’ (A 1)
Y, 0v)=—-—mv° +-—mv —_— .
e 2 2 R
where (r, #') are the positions and v := dr/dt, v’ := dr'/dt the velocities of the masses in an
inertial frame; R :==|r — ¢ | is their relative distance and G is Newton’s constant. The
invariance (modulo an exact time derivative) of this Lagrangian under spatial translations
and Galileo transformations implies, via Noether’s theorem, the conservation of the total
momentum of the system:

) Py =mv + m'v (A.2)
and of the centre-of-mass integral:
Ky =mr + m'r — tPy (A.3)
In the centre of mass frame defined by Py = Ky = 0 so that:
r = uR/m; r = — uR/m’ (A.4a)
v=uVim; vV = —uV/m’ (A.4Db)

(withR:=RN:=r — ¥'; V=0 — v';M:=m + m’; == mm’/M), the Newtonian equations
of motion reduce to:
dV/dt = — GMN/R? (A.5)

As is easily checked the equation of motion (A.5) can also be derived directly from the
reduced relative Lagrangian LY(R, V) obtained by replacing in u~'Ly(r, ¥, v, v') the posi-
tions and velocities by their centre of mass expressions (A.4):

LYR, V) = le + oM (A.6)
NUER - 2 R .
The invariance of the reduced relative Lagrangian (A.6) under time translations and
space rotations implies, via Noether’s theorem, the conservation of:

1 GM
E=-V2-__ (A.7)
2 R '
J=RxV (A.8)

which are the reduced (1~ ') energy and angular momentum of the binary system in the
centre of mass frame.

Eq. (A.8) implies that the motion takes place in a plane. Using polar coordinates (R, 6)
in that plane and the relations:

{ V2 = (dR/dt)? + R2(d/ds)?

A.9
IR x V| = R2d6/d: 4.9
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we obtain from (A.7-A.8):

(dR/dt)? = A + 2B/R + C/R? (A.10)
de/dt = H/R? (A.11)

where
A=2E;B=GM;C=-J;H=|J|=1]. (A.12)

The solution of equations (A.10-A.11) is well known. In the case where A < 0 (elliptic
motion), one introduces a parametrisation by means of the eccentric anomaly u:

nt —ty) =u—esinu (A.13 a)
R = a(l — e cos u) (A.13b)
and as
H 1 — e%du
dd = ———— (A.14 a)
/_Ccl—ecosu
H
8 — 0y = —— Au) (A.14 D)
with
1+ e\'?
A (u) = 2 arctan |:<1 e> tan gj| (A.14¢)
—e

The orbit is obtained by eliminating u between the radial and angular motions (A. 13-A.14).
When H = (— C)/? [as implied by eq. (A.12)] it is an ellipse:
p

- S S — (A.15)
1+ ecos(0 — )

In (A.13-A.15) a, the semi major axis, and e the eccentricity are given in terms of A,B,C
by:
a= — B/A; e =(1 — AC/B)'? (A.16)
The semi-latus rectum p is given by
p=al —¢e*)=—-C/B (A.17)
and the mean motion n = 2x/period is:

n = (= A)*?/B = (B/a®)"? (A.18)

Let us note that if one adds a term proportional to R™? to the interaction potential
(as in Appendix C) then eq. (A.10-A. 11) still hold but the factor K :== H.(— C)~ Y2 appear-
ing in the RHS of eq. (A.14) is different from one. Then one must replace in eq. (A.15)
8 — 6, by (§ — 8,)/K, and one finds a « precessing ellipse » which precesses at each turn
by an angle 27(K — 1).

In the case A > 0 (hyperbolic motion) the solution is obtained from (A.13, A.14)
by analytic continuation in A, together with the replacement u = / — 1v, which yields:

n(t — tg) = esinhv —v

+ 1\ v :
0 — 0, = K2 arctan[(e 1) tanh 3 (A.20)

R = glecoshv — 1)

with
a = B/A; n = (B/a*)'"? (A.23)
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The parabolic case (A = 0) is simply obtained as a limit as A — 0. For instance one can
start from the elliptic solution (A.13-A.15) and pose:

u=(1- ey (A.22)

or:
u = (— A/B?)2x
and take the limit A — 0~ keeping w (or x) fixed.
As for the motions of each object they are deduced from (A .4 a):
= m'R/M angle 0
{ r=mR/M (angle 6) (A.24)
r = mR/M (angle 6 + w)

R and 6 being given by (A.13, A.14).

(A.23)
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APPENDIX B

THE POST-NEWTONIAN QUASI-ELLIPTIC MOTION
BY LAGRANGE’S METHOD OF VARIATION
OF CONSTANTS

The equations of motion for two bodies at the post-Newtonian approximation of General
Relativity read, in the post-Newtonian centre of mass coordinate system:

dv GM N 1 o1/t B.1

—=——N+San+ .

i R2 2 (1/c%) (B.1)
where R:= RN and V are the relative distance and velocity; M :=m + m’ is the total
mass; G is Newton’s constant, ¢ the speed of light and:

1
e = AN + T T (B.2)

] T A W A Rt
@—CZRZ[ <1+M>V +14 2M(NV) + 4+M R (B.3)

is the component of the perturbing acceleration along the unit vector N in the direction
of the instantaneous radius vector R, and where

5= M (4 2 >(NV) 49 (B.4)
TR M dat’ '

where

is the component of the 'perturbing acceleration along the unit vector T in the instantaneous
orbital plane, perpendicular to the radius vector in the sense of motion, 6 being the polar
angle of N; p is the reduced mass y = mm’/M (cf. [33]).

In the absence of the post-Newtonian perturbing acceleration (B.2-B.4), the motion
of the two bodies is Newtonian (cf. Appendix A). It is characterized by 6 constants of inte-
gration, the 6 Keplerian orbital elements: Q (the longitude of ascending node) and i (the
inclination of the orbit) which determine the orientation of the plane of the orbit; w (the
longitude of periastron, denoted 6, in Appendix A) which determines the orientation of
the orbit, an ellipse, in that plane; a (the semi-major axis) and e (the eccentricity) which
determine the shape of the ellipse and t (the epoch of periastron passage, denoted ¢, in
Appendix A) which fixes the origin of time.

The post-Newtonian perturbing acceleration (B.2-B.4) makes the 6 osculating Keplerian
orbital elements to vary with time. Since this acceleration lays in the orbital plane, Q and i
remain constant. The equations for the 4 other elements (the Gauss equations) read
(cf. e.g. [21]):

da 2

—=————[%Resin ¢ + (1 + ecos ¢)7] (B.5a)
dt /1 — &

d 1 —¢* 2 2 .

de _ e l:%sin¢+(e+ cos ¢ + ecos ¢)€} (B.5 b
dt na 1+ ecos¢
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do J1 - e2|: sin ¢(2 + e cos @) :|

LY T g LA T NP B.5
dt nae cos ¢ 1 +ecos ¢ ( 9
d_ " 1—e? [%(—R +cos ¢ + ecos’ §) sin §(2 + ecos ¢) 6’:' (B.5d)
dt nae 1+ ecos¢ 1+ ecos¢

where the mean anomaly I = n(t — 7) is used instead of 7. The time dependence of the true
anomaly ¢ = 0 — o can be expressed parametrically:

1 +e\'? u
¢ =6 — w = 2 arctan tan — (B.6)
1-—e 2

nt—1t)=u—esinu B.7)

u being the eccentric anomaly and n the mean motion:
n = (GM/a3)'2. (B.8)

Since we have, by definition of the osculating elements:

P GM\!/2
=—3 (NV) = <—> e sin ¢
1+ ecos ¢ )4
GM
V2= —(1 + e® + 2e cos @) (B.9)

do
- = n(l + e cos $)*/(1 — €?)%/?

p = a(l — ¢?) being the semi-latus rectum, we can write:
2nf2

7
(1 + e cos ¢)2|i3—ﬁ+3e2 Ll
M 2M

i
+ (2 —4ﬁ>e cos & + <—4 +5—”M>e2 cos? ¢}

2042 2
€=cz—p3(1 + e cos ¢)3<4—ﬁ>esin¢ (B.10)

R =

CZP3

Equations (B.5) can then easily be integrated if one approximates in their RHS the oscu-
lating elements by constants. One finds:

(t) ‘{1 oM [( 1416l 6y e “) ¢
at)=a — | = — —6er+ —e? — |e cos
pl—e?) M 4 ™M)

u 1pn
+(=5+4_—) 2 +——3cos3:|}
( M)e cos 2¢ 4Me ¢

(t) ‘{1+GM[< 344 72+472”>c é
t) = - — — le — e~ — Je CoS
) ¢ c2pe? M 8 M

5 1
+<—§+2%>e20032¢+§ﬁe3cos3¢:|} (B.11)
_ GM B 21 H)] ,
= — 3 —3+—+2<1+—— sin
2 0) w+czpe{ e¢+|: Mte e M ¢
+e<_§+2i>sin2¢a+1£—e2 sin3¢}
27 M 8 M
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GM 41
It) = n(t —7) +—_|:<3 —£+ 7e? ———e2£>sin¢
ec*/pa M Y

5 1
+ (5 —Zﬁ)e sin 2¢ —gﬁez sin 3¢

sin ¢ Tu
+e? ———— (1 —-¢€ <—3+———>i|
1+ecos¢( ) ) 2M

where a, e, w and 7 are constants of integration and where

_ /GM\'?[  GMa 2, 19 7
n=(_—> [1+——(—9+2£——e2+—e2ﬁ—3e4+—ﬁe4>jl (B.12)
a® c*p? M 2 2 M 2M

(In the limit when u/M = 0— « restricted two-body problem » —corresponding formulae
were obtained by Brumberg [6]). The problem is then solved but the solution is very heavy.
"Note the appearance of « second harmonics » of the motion, that is of terms in cos 3¢
in egs. (B.11). Several partial simplifications were proposed in the literature: see
e. g [33] [4] [19]. However, rather than manipulating the osculating elements, it is much
simpler to integrate directly the equations of motion (B.1-B.4): see the text where the
solution is expressed only in terms of « zeroth harmonics » (fundamental frequency). We
have checked that the solutions coincide.
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APPENDIX C

THE POST-NEWTONIAN MOTION OBTAINED
VIA THE MAUPERTUIS PRINCIPLE

Infeld and Plebanski ([22] Chapter 5) have tried to take advantage of the existence of
a relative Lagrangian to reduce the problem of the post-Newtonian motion to a simpler
auxiliary problem of a Newtonian motion by means of several « transformations » both
in space and time. However their method is conceptually incorrect because their « time
transformations » do not constitute a licit operation that can be applied to a variational
principle (for a discussion of the allowed time and space transformations and their effects
on a variational principle see [29] [2] [I4]). Moreover they ignore in the Lagrangian
terms proportional to (V2/2. — GM/R)? which is also incorrect as will be seen below.
However we shall sketch here a method based on the Maupertuis principle which succeeds
in reducing our post-Newtonian problem to a simpler Newtonian one. This method uses
three tricks: the first trick consists in making a conchoidal transformation, i. e. precisely
to replace the relative radial variable R in terms of a new radial variable R’ by means of:

R=Rr 4G (C.1)
B 2 c? '

keeping the angular variable unchanged (6 = &').

The relative Lagrangian expressed in terms of R’ and V' = dR’/dt is:
GM 1 GM 3G2M?

RI

- —_— —_ "R’ ny2 — 174 X4 ’ o
R'+gc2(1 IER, VIV + @ =5 BR, V) + e (C2)

1
L =-V?2 +
PN 2 6'2
with
1 GM

(R, V) =2 V7~ — (C.3)

Now one checks easily that if one first computes the variational derivative 5(E'(R’, V’))%/6R’
and then (« after variation ») takes advantage of the fact that E'(R’, V') = Ey + O(1/c?)
where E§ is a constant number, one finds:

i [(E'(R’, V)] 4E¢ o oM + O(1/¢*) (C.49
_ R = — —_— C .
SR 'SR’ R’
Then the second trick consists in noticing that because of eq. (C.4) one can, modulo O(1/c*),
replace in the Lagrangian (C.2) (E'(R’, V"))? by —4GME}/R’ where E}, is a constant number
which, after variation, will be put equal to the constant energy of the relative motion. In
other words this second trick consists in replacing the total mass M by:

Ep
M’=M<1 -2(1 —3v)—2> (C.35)
c
and the relative Lagrangian by:

Lr _ Lye  OM 3@ME
PN — E R’ RIZCZ Y

4 )GM E'(R, V') C.6)

—V)— R .
R’¢? (

where in the expression (C.3) for E’(R’, V') one can consistently replace M by M’.
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Now let us more generally consider a Lagrangian of the type:

L< dr) 12+m+lw()+l()<l2 m) .
,— | == —+=Wr +—=er|-v? —— .
" dt 2" roc? c? 2 r
L does not explicitly depend on time, so that one can define a constant energy:
oL
Eo=v.——-L (C.8)
ov

Then the spatial trajectory will be derivable from the Maupertuis principle (see e. g. [24])
at fixed energy:

oL
o||—.dr =0 (C.9
av Eo = const
One checks easily that the Maupertuis principle of (C.7) is, modulo O(1/c%):
m 1 &r) 1/2
0|2 Eo + — + 5 W(r) + —Eo ldr| =0 (C.10)
r ¢ c
Now let us consider the auxiliary variational problem expressed with a time ¢’ and a Lagran-
gian:
L’< d') 1(‘1')2 2 L we + Vg (C.11)
,— | === —+ —=W(r) + — .
" 2 \dt’ ro ¢ 2

where E, is a constant which, after variation, will be put equal to the energy. One sees
that the Maupertuis principle of (C.11) for a constant energy:

dr oL’

=—.—— L (C.12)

dt’  d(dr/dt’)
is precisely (C.10). Therefore the Lagrangian L of (C.7) has the same spatial trajectories
as the Lagrangian L’ of (C. 11). However the motion along the trajectories is not the same for
L and L". Computing the respective velocities | v | =|dr/dt| and |dr/d¢ | from eq. (C.8) and
(C.12) one finds that along the trajectories the time variables associated with L and L’ are

linked by:
d d
d,='_L'=<1+@> |dr] =<1+@>dz/ (C.13)
|v] c? /| dr/dt’ | c?

Then our third trick consists in applying the general result just discussed to the Lagran-
gian L% (C.6). In that case we have r = R’ and:

g GM
=l (C.14)

Therefore our post-Newtonian problem is equivalent to the following auxiliary simple
Newtonian problem:

1 GM” 3G2M?
L R’, V") = — V/IZ + + — C.15
g )=V o+ o+ (€15
where we use an auxiliary time ¢/, and where we have denoted:
dR’
V= (C.16)
dt’
and:
M” = M’ + (4 — vME}/c?
{ ( V)MEj/c (C.17)
M” = M1 + (2 + 5v)Ep/c?]
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(Ef being, modulo O(1/c*), the same constant as defined above). The real time ¢ is linked
to ¢’ by:

dt = |:1 + 4 )GM:|dt’ C.18
= v R (C.18)

Now the motion R’(t") corresponding to Ly eq. (C. 15) is very simply obtained, for instance
by the method of Appendix A. One finds for the coefficients A, B, C and H : A = 2Ej,
B = GM”, C = — J?+ 6G*M?/c? and H = J;. In particular the orbit is a « precessing
ellipse » with a precession factor (see appendix A) K =H.(—C)™ "2 =T /(J#— 6G*M?/c?)'12.
Finally expressing Ej and J§ (the first integrals of Ly) in terms of E and J (the first integrals
of LBy), we have checked that one recovers the solution obtained by a more direct procedure
in the text.

REFERENCES

[Z] B. M. Barker and R. F. O’CoNNELL, Phys. Rev. D., t. 12, 1975, p. 329.

[2] B. M. BARkER and R. F. O’CONNELL, Phys. Rev. D., t. 29, 1984, p. 2721.

[3] L. BeL, T. DAMOUR, N. DERUELLE, J. IBAREZ, J. MARTIN, Gen. Rel. Grav., t. 13, 1981,
p. 963.

[4] R. BLANDFORD, S. TEUKOLSKY, Astrophys. J., t. 205, 1976, p. 580.

{51 R. A. BREUER, E. RUDOLPH, Gen. Rel. Grav., t. 14, 1982, p. 181.

[6] V. BRUMBERG, Relativistic celestial mechanics, Nauka, Moscow (in Russian), 1972.

[71 A. CAPORALL, Nuov. Cim., t. 61B, 1981, p. 181, 205 and 213.

[8] T. DAMOUR, in Gravitational radiation, N. Deruelle and T. Piran eds, North-Holland,
Amsterdam, 1983, p. 59.
[9] T. DAMOUR, Phys. Rev. Lett., t. 51, 1983, p. 1019.

[10] T. DAMOUR, in Proceedings of Journées Relativistes 1983, S. Benenti et al. eds, Pitagora
Editrice, Bologna, 1985, p. 89.

[11] T. DamOUR, N. DERUELLE, Phys. Lett., t. 87A, 1981 a, p. 81.

[Z2] T. DAMOUR, N. DERUELLE, C. R. Acad. Sc. Paris, t. 293, série 1I, 1981 b, p. 877.

[13] T. DaAMOUR, N. DERUELLE, (to be submitted for publication), 1985.

[14] T. DAMOUR, G. SCHAFER, Gen. Rel. Grav., in print, 1985.

[15] P. D. D’EATH, Phys. Rev., t. D12, 1975, p. 2183.

[16] W. G. DixoN, in Isolated gravitating systems in general relativity, J. Ehlers ed., North-
Holland, Amsterdam, 1979, p. 156.

[17] D. M. EARDLEY, Astrophys. J., t. 196, 1975, p. L 59.

[18] J. EHLERS, Ann. N. Y. Acad. Sci., t. 336, 1980, p. 279.

[19] R. EPSTEIN, Astrophys. J., t. 216, 1977, p. 92, see also the errata in t. 231, p. 644.

[20] P. EsNAULT, D. HOLLEAUX, Contribution a I'étude du mouvement d’un systéme double
relativiste (unpublished), 1982.

[211 Y. HAGIHARA, Celestial Mechanics, the MIT Press, 1970.

[22] L. INreLD, J. PLEBANSKI, Motion and Relativity, Pergamon, Oxford, 1960.

[23]1 R. E. KATES, Phys. Rev., t. 22, 1980, p. 1871.

[24] L. D. Lanpau, E. M. LirsHITZ, Mécanique, Mir, Moscou, 1969.

[25] L. D.LaNDAU, E. M. LissHitz, The classical theory of fields, Addison-Wesley, Reading,
Mass, 1971.

[26] H. A. LORENTZ, J. DROSTE, Versl. K. Akad. Wet. Amsterdam, t. 26, 1917, p. 392
and 649, reprinted in the Collected Papers of H. A. Lorentz, t. 5, 1937, p. 330. The
Hague, Nijhoff. '

[27] M. PORTILLA, R. LAPIEDRA, in Actas de los E. R. E. 1983, L. Mas. ed., 1. C. E.-Depar-
tament de Fisica Teorica, Palma de Mallorca, 1984, p. 267.

[28] H. P. ROBERTSON, Ann. Math., t. 39, 1938, p. 101.

Vol. 43, n° 1-1985.



132 T. DAMOUR AND N. DERUELLE

[29] G. ScHAFER, Phys. Lett., t. 100A, 1984, p. 128.

[30]1 N. Spyrou, Gen. Rel. Grav., t. 9, 1978, p. 519.
[31] N. SpYRoU, Gen. Rel. Grav., t. 13, 1981, p. 473 (see also t. 15, 1983, p. 363).

[32] J. H. TAYLOR, J. M. WEISBERG, Astrophys. J., t. 253, 1982, p. 908.
[33] R. V. WaGoNER, C. M. WILL, Astrophys. J., t. 210, 1976, p. 764.
[34]1 C. M. WILL, Theory and experiment in gravitational physics, Cambridge University

Press, Cambridge, 1981.
[35] C. M. WiLL, D. M. EARDLEY, Astrophys. J., t. 212, 1977, p. L 91.

( Manuscrit recu le 3 janvier 1985)

Annales de I Institut Henri Poincaré - Physique théorique



