ANNALES DE L’I. H. P., SECTION A

THIBAULT DAMOUR

NATHALIE DERUELLE

General relativistic celestial mechanics of binary
systems. II. The post-newtonian timing formula

Annales de I'l. H. P, section A, tome 44, n°3 (1986), p. 263-292
<http://www.numdam.org/item?id=AIHPA_1986__44 3_263_0>

© Gauthier-Villars, 1986, tous droits réservés.

L’acces aux archives de la revue « Annales de I'. H. P, section A » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPA_1986__44_3_263_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 44, n° 3, 1986, p. 263-292. Physique théorique

General relativistic celestial mechanics
of binary systems
II. The post-Newtonian timing formula
by

Thibault DAMOUR

Groupe d’Astrophysique Relativiste,
CNRS-Observatoire de Paris,
92195, Meudon Principal Cedex, France

and

Nathalie DERUELLE

Laboratoire de Physique Théorique,
CNRS-Institut Henri Poincaré,
11, rue Pierre et Marie Curie, 75231, Paris Cedex 05, France

ABSTRACT. — Starting from a previously obtained « quasi-Newtonian »
solution of the equations of motion of a binary system at the first post-
Newtonian approximation of General Relativity, we derive a new « timing
formula » giving the arrival times at the barycenter of the solar system of
electromagnetic signals emitted by one member of a binary system. Our
timing formula is simpler and more complete than presently existing timing
formulas. We propose to use it as a timing model to be fitted to the arrival
times of pulses from binary pulsars. Specifically we show that the use
of this timing model in the analysis of the timing measurements of the Hulse-
Taylor pulsar could determine more parameters than is presently done.
This should lead to additional tests of the simplest model of this binary
system and to the first test of relativistic theories of gravity independent
of any hypothesis of « cleanness » of the system.

RESUME. — A partir d’une solution « quasi-newtonienne » des €quations
du mouvement d’un systéme binaire 4 la premiére approximation post-
newtonienne de la Relativité Générale précédemment obtenue, nous déri-
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264 T. DAMOUR AND N. DERUELLE

vons une nouvelle formule de chronométrage donnant les temps d’arrivée
au barycentre du systéme solaire des signaux électromagnétiques émis par
un des membres d’un systéme binaire. Notre formule de chronométrage
est plus simple et plus compléte que celles existant actuellement. Nous
proposons de l'utiliser comme un modéle auquel ajuster les temps d’arrivée
des impulsions en provenance de pulsars binaires. Plus précisément, nous
montrons que lutilisation de ce modéle de chronométrage dans I'analyse
des données du pulsar de Hulse et Taylor pourrait permettre de déter-
miner plus de paramétres que jusqu’a présent. Cela devrait conduire a des
tests supplémentaires du modéle le plus simple de ce systéme binaire et
au premier test des théories relativistes de la gravitation indépendant de
toute hypothése concernant la « propreté » du systéme.

1. INTRODUCTION

Since its discovery by Hulse and Taylor [/3], the binary pulsar PSR
1913+ 16 has been timed with steadily improving precision. The fit of the
observed arrival times on Earth of the radio pulses to a « timing formula »
derived from a simple model of the system (essentially a general relativistic
two-points-masses model) has allowed Taylor and collaborators ([/7] and
references therein) and Boriakoff et al. [4] to measure all the parameters
needed to determine the dynamics of the system. Moreover two checks
of the model were performed. The measured rate of decay of the orbital
period, P, [16] [/7], and the measured sine of the angle of inclination
of the orbital plane onto the celestial sphere, sin i [/9], have indeed been
found to agree with the theoretical predictions as deduced from the model
and evaluated using the other directly measured parameters. The observed

Pg®s agrees within 4 9 with the calculated P*°” deduced from the so-called
« quadrupole formula » which has been recently shown to be indeed a
consequence of the general relativistic mechanics of two strongly self-
gravitating bodies ([5] [6] [7] and references therein). As for the observed
and calculated sin i they agree within 20 9, [/9] but the significance of
that test is somewhat obscure because the parameter sin i which is fitted
for does not represent a clear-cut relativistic effect but a « coherent combi-
nation » of many relativistic effects (the combination being defined by
fixing, somewhat arbitrarily, some theoretical relations between the para-
meters appearing in these relativistic effects).

From those results Taylor and collaborators concluded that: 1) the
simple model used is consistent with observation and therefore, as assumed
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GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS. II. 265

in the model, the system is indeed « clean »; 2) the system provides a new
and profound confirmation of the theory of General Relativity and plausibly
rules out a number of alternative theories of gravitation (for a detailed
discussion of these points see also Will [2/] and references therein).

Because of the importance of such conclusions the chain of deductions
must be critically examined. It is essentially the following: first assume
that the system is « clean » and that General Relativity is valid (that is
that the system is reducible to a general relativistic two-point-masses
model); then interpret the measurements of P, and sin i as consistency
checks confirming the latter assumptions. A more cautious and more
rigourous procedure would however start by pointing out that secular
effects such as the advance of the periastron, @, and the rate of decay of
the orbital period, P,, are sensitive to many of the « noise sources » that
could « dirty » the system, such as the quadrupole deformation of an
extended companion, the presence of an external ring of matter or a third
body, mass-loss from the companion, tidal dissipation, accretion of matter...
(see e.g. [15] [11] [2] [20]). As there are no a priori reasons to believe
that all possible noise sources are absent, it must rather be assumed that
o and Pg* do contain some unknown noise contributions. Then, if
we still assume the validity of General Relativity, the two « consistency
checks » (« P, » and « sini » ) only show that the noise contributions to
the two secular effects ¢ and P, happen to be small (smaller say than 20 %,
the error on sin i). From that point of view then, the present analysis of
the observational data does not provide any confirmation of General
Relativity. Furthermore, if we used a theory of gravity other than General
Relativity (along the lines of Will [20] [21]) we would deduce from the
observations the noise contributions to @ and P,, and the values of the
masses of the pulsar and its companion (differing from the general rela-
tivistic values by theory-dependent gravitational binding energy contri-
butions). Therefore, strictly speaking, the present analysis of the timing
measurements of the Hulse-Taylor pulsar furnishes, neither a clear-cut
test of the relativistic theories of gravity, nor an unambiguous (theory-
independent) determination of the masses of the pulsar and its companion.
One can only argue that General Relativity provides a_more plausible
description of the system because it predicts Pfe™ ~ Pg®, while most
alternative theories seem to predict | P~ | » | Pg**|, so that the observed
decay rate should be interpreted as a small residual between much bigger
« theoretical » and « noise » contributions (for instance in Rosen’s theory
one would have Pfeow ~ — Pgoise  — 103PgPs),

The preceding critical remarks raise the question whether it is possible
to extract additional informations from the observational data so as to
reach reliable conclusions concerning the determination of the masses,
and to get clear-cut tests of the theories of gravity. Because of the above
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266 T. DAMOUR AND N. DERUELLE

mentioned « noise sensitivity » of secular effects, it seems appropriate
to concentrate on the « quasi periodic » effects which are probably harder
to mimic by « noise » sources. Specifically we have in mind a nearly « clean »
system: whereas various « noises » contribute small, but unknown, amounts
to @ and P,, their contributions to the « quasi periodic » effects can be
expected to be uncorrelated to the relativistic effects (in the sense that
they will not interfere with the fitting procedure proposed in this article),
or to be altogether negligible (in view of the low precision of determination
of the post-Newtonian periodic effects). This led us to reexamine in detail
the relativistic timing formulas presently used to extract informations
from the raw observational data. The basic timing model is due to Bland-
ford and Teukolsky [3] and Epstein [//]. Epstein’s description of the
post-Newtonian timing effects due to relativistic corrections to a Keplerian
motion is formidably complicated. This complication entailed two regret-
table consequences: 1) it hided for several years an oversight (replacement
of the periastron argument by a linear function of time while it is a linear
function of the true anomaly), and 2) it led Epstein to parametrize « glo-
bally » all the post-Newtonian effects by a single parameter sin i whose
significance is obscure.

In this paper we show how the use of a new, remarkably simple, explicit
solution of the post-Newtonian motion of a binary system [9] leads to a
drastic simplification of the description of post-Newtonian timing effects.
This simplified description will allow us to discuss the significance of the
present measurement of sin i, as well as the possibility to measure other
« post-Newtonian periodic » parameters. We shall moreover include in
our timing model the effect of the relative motion of the binary system
and the solar system as well as the effect of the aberration of the radio
pulses emitted by the pulsar. The effect of the relative motion was discarded
by Blandford and Teukolsky [3] on the grounds that neglecting it only
introduces small [O(v,,.ive/c)] and constant uncertainties in the measure-
ments of the orbital elements. However, in view of the increasing accuracy
of the « P, test » it becomes necessary to have a better control of the exact
influence of these intrinsic uncertainties. As for the aberration effects (which
are as important as post-Newtonian effects, that is ~ 12 u sec), they were
considered by Smarr and Blandford [15] and Epstein [//], and discarded
by Epstein on the grounds that they could be mimicked by small secularly
variable corrections to the Newtonian and half-post-Newtonian parame-
ters. However no proof of this statement was given. Moreover the latter
authors do not use the full aberration effect but neglect a numerically
important secularly changing aberration term. Since the detection of any
effect due to the aberration would give the first direct evidence that pulsars
are rotating beacons we decided to include explicitly these aberration effects
in our timing formula.

Annales de I'Institut Henri Poincaré - Physique théorique



GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS. II. 267

This paper is organized as follows: in section 2 we derive a new timing
formula in the framework of General Relativity (we show in § 3.4 that in
other gravity theories the timing formulas have the same form). In sec-
tion 3 we first discuss the effect of the relative motion between the solar
and the binary systems (§3.1); then the effect of aberration (§3.2) and
finally we examine which new « post-Newtonian periodic » parameters
could be measured (§3.6-§3.9). In §3.5 we give the explicit differential
timing formula (useful for the linearized least-squares fit) corresponding
to our timing formula. Section 4 summarizes our results. Appendix A
gives some details about the mathematical derivation of the timing formula.

2. DERIVATION OF THE TIMING FORMULA

By « timing formula » it is meant the mathematical relation linking the
time of arrival 1™ as measured by an observer on Earth, of the Nth
pulse emitted by a pulsar in a binary system, to the integer N. This timing
formula depends on many parameters which describe the various physical
effects taking part in the history of the electromagnetic signal connecting
the pulsar and the Earth. It is convenient to treat separately the latter
physical effects by introducing intermediate time variables (t,, t,, t., T., T).
This will allow a step by step derivation of the timing formula [of the

type: ,L.EIEan.h) = fl(ra), Ta = fZ(ta), RS T =f6(N)]

2.1. The « infinite-frequency barycenter arrival time » : 7.

We shall first assume, following Blandford and Teukolsky [3], that,
correcting for the motion of the Earth with respect to the barycenter of
the solar system as well as for the gravitational redshift in the solar system
and the effect of interstellar dispersion, one has computed from tFar®)
the (hypothetical) time of arrival 7, of the Nth pulse at the barycenter of
the solar system in absence of any solar gravitational redshift and interstellar
dispersion [see equations (2.23)-(2.24) of Blandford and Teukolsky [3]
defining 7, = t, the « infinite-frequency barycenter arrival time »].

2.2. The coordinate time of arrival : 7,.

The relation linking the proper time 7, to the integer N is clearly general-
relativistically invariant and can be computed using any convenient
coordinate system. Let us use a system of harmonic coordinates such that
« the barycenter of the binary system » is at rest at the origin (see [6] for
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268 T. DAMOUR AND N. DERUELLE

the precise definition of this « center-of-mass frame » to order ¢~%). In
this coordinate system the barycenter of the solar system is moving with
the velocity v, (assumed here constant); t, is therefore linked to the coor-
dinate time of arrival ¢, by:

7, = (1 — BZ/cH)'?t, + const. (1)

Additive constants like the last term in equation (1) are unimportant and
will be often omitted in the following.

2.3. The coordinate time of emission : ¢,.

The coordinate time of arrival t, is linked to the coordinate time of emis-
sion of the pulse ¢, by:

t, =1, + ;I Tolts) — F(t.) | + As, 2

where 7, is the coordinate position vector of the barycenter of the solar
system, 7 the coordinate position vectot of the pulsar (| V| denoting the
usual Euclidean length of V: [(V1)2 + (V3)? + (V3)?]"/2), and As denotes
the « Shapiro time delay » due to the propagation of the radio signal in
a curved space-time. Ag has been computed by Blandford and Teukolsky [3]
under the assumption of everywhere weak gravitational fields. This assump-
tion is violated in the case at hand (2Gm/(c*r) ~ 0.4 at the surface of a
neutron star, compared to 2GMg/c?Ry ~ 4.107¢). However it can be
shown [8] that, in General Relativity, strong field effects modify their
result only by an inessential additive constant:

2Gm’ o o S, > -
Ag(te) = — c:n log [n.(F(t) — 7'(z.) + | F(te) — 7/(t)| ]

v\**Gm’
+ const. + O((;) —'5—), )

c

where 7 denotes 7,/| 7, | (unit vector pointing from the binary system to
the solar system) m’ and 7 being respectively the mass and the position
vector of the companion (the corresponding quantities for the pulsar
being denoted m and 7). In equation (2) the quantity ¢~ | 7,(t,) — 7(t.)|
depends on t, through the motion of the solar system: 7,(t,) = 7,(0)+ T,t,.
Expanding it to first order in powers of (B,t,— 7)/| 7,(0) | and using equa-
tion (1) we find

D.t, = t, + Ag(t.) + Ag(t.) + const., @)
where D is the following « Doppler factor »:
D;: 1__’;;6;,/(' (5)

J1 =g
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GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS. II. 269

and where Ay denotes what can be called the (coordinate) « Roemer time
delay » i. e. the time of flight across the orbit (counted from the barycenter
and projected on the line of sight — 7)

1,
Anlte) = — — 1. F(te). (6)

2.4. The « proper time » of emission (T,, T).

It remains to relate the coordinate time of emission ¢, of the Nth pulse
to N. This can be done in two steps.

First introduce a suitable « proper time » T for the pulsar associated
to a suitable « comoving coordinate system » X' such that in the coordi-
nate system (T, X‘) the emission mechanism of the pulsar can be described
(with a sufficient accuracy) as if the pulsar was isolated. Assume that a
pulsar is a rotating beacon geared to the fast spinning motion of a neutron
star. In the coordinate system (T, X’) the « proper » angle ® measuring
the position of the emission spot which rotates around the spin axis, say
é; = 0/0X3, is then related to the « proper time » T by the following equa-
tion (valid for slowly spinning down noiseless pulsars):

— 1 1
®/2r = Ny + T + E\'»Tz + p VT3, 0))

where N is a constant (not necessarily an integer), v is the proper rota-
tion frequency of the pulsar (at T = 0) and v and V the first and the second
derivatives of the rotation frequency (at T = 0).

Now the proper time T, of emission of the Nth pulse is linked to N by
~ the fact that the proper angle ®, = ®(T,) of emission of the Nth pulse is
equal to

N(T,) = ®y + 2nN + 5, N(T,), ®)
where @, is a constant and where the non constant angular shift §,® is
caused by the aberration effects involved in the transformation between
the comoving frame (T, X) and the center of mass frame (t, x°). One finds
([15], see [8] for a proof that taking into account the strong gravitational
field of the pulsar does not alter, in General Relativity, the result):

v.(nx ¢ v?

0,0 = + —%—2—) + O(“?): %a)
c(n x ej) c

where ¥ = d7/dt is the coordinate velocity of the pulsar and é; the direc-

tion of the spin axis in the center of mass frame. We can associate to the
angular shift 5,@ an « aberration time delay » A, defined as

Ay = 3D/2). (9b)

Vol. 44, n° 3-1986.



270 T. DAMOUR AND N. DERUELLE

Introducing as additional intermediate variable the proper time
T:=T, — A4, (10)

at which the Nth pulse would have been emitted if the pulsar mechanism
had been a radial pulsation instead of a rotating beacon, one finds that T
is implicity defined as a function of N by the relation:

1 1
N:N0+vT+§\'}T2+g'\3T3, (11)

where N, denotes N, — ®,/27.
Now the coordinate time of emission, ¢,, is linked to the proper time of
emission T, by ‘
te = Te + AE ’ (12)

where Ag (the « Einstein time delay ») contains contributions coming from
the gravitational redshift caused by the companion and from the second
order Doppler effect [see equation (19) below for the explicit expression

Then, using equations (4), (10) and (12), we find that 7, is linked to T
through .
D.TH=T+AR+AE+A5+AA. (13)

As A, is a very small delay [A, ~ (v/c) (pulsar period) <<«< (binary period)],
the time delays Ag, ... in equation (13) can be computed at the time T (instead
of T, =T + Ay).

2.5. The post-Newtonian motion in terms of the proper time.

Now in order to write down an explicit formula for 7, one must have an
explicit solution for the relativistic motion of a binary system. A recent
reexamination of the relativistic mechanics of binary systems (Damour
and Deruelle [9] hereafter quoted as paper I) has led to discover a remar-
kably simple « quasi-Newtonian » form of the motion at the post-New-
tonian order. In the « center of mass frame » used here the motion of the
pulsar lies in a plane, say (é,, ¢,), whose position and orientation with
respect to the plane of the sky, say (éx,, éy,), are defined by two angles:
the longitude of the ascending node Q (0 < Q < 2x) and the inclination
i(0 < i < m). Our orientation conventions are the following: the (ortho-
normal right handed) triad (é,, ¢,, ¢,) [where ¢, is directed towards the
ascending node and where the plane (¢,, ¢,) is oriented in the sense of the
motion] is deduced from the reference triad (éx,, éy,, €z,) (Where é;,= — 7
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is the direction from the Earth to the pulsar) by two successive rotations,
namely

-

_éx = _éx . (14 a)
é, =cos iéy + sinié,, (14 b)
é, = — sin iéy + cos iéz, (14¢)
with
éx = cos Qéx, + sin Qéy,, (15a)
éy = — sin Qéx, + cos Qéy,, (15b)
L —éz = _éZo‘ (15 C)

The motion of the pulsar in the plane (¢,, €,) is defined by the polar coordi-
nates r = | 7| and 0 (counted from the ascending node in the sense of
the motion) so that 7 = r cos ¢, + r sin 6¢,. Then one has the following
« quasi-Newtonian » parametric representation of the motion of the pulsar
[equations I(7.1) of paper I]:

nt—Ty) =U — ¢ sin U, (16 a)
r=a(l — e, cos U), (16 b)
| 0=0wo+(1+KkA,WU), (16¢)

where n, Ty, ¢, a,, €,, 0, k, eg are constants, n = 2n/P, with P, being the
time of return to the periastron ( « binary period » ), k = A6/2n with Af
being the angle of periastron precession per orbit (k = w/n), and where
the function A_(U) is defined as [equation I(4.11 b) of paper 1] (for e < 1):

1+ e\'? U
A (U) := 2 arctan |:<1 e> tan 7] . (17 a)
— e

The function A,(U) satisfies the identities ([/8]), A(pr) = pr(Vp € Z), and

cosU—e
cos A(U) = ————, (17 b)
1—ecosU
1— 2\1/2 o3 U
sin A(U) = L - €))7 snU (17¢)
1—ecosU

0

A(U)=U + ZZq‘l[e/(l + (1 — €e*)'?)]%sin qU . (174d)
q=1
Let us also introduce for convenience the total mass of the system M:=m+m’

and the (relativistic) « semi-major axis » of the relative orbit (R =7 —7)

[see equation 1(6.3 a)]

M
agp = — Q,. (18)
m

Vol. 44, n° 3-1986.



272 T. DAMOUR AND N. DERUELLE

Now the explicit link between « the proper time of the pulsar », T, and
the coordinate time t, has been investigated (assuming everywhere weak
fields) by Blandford and Teukolsky [3]. A recent work valid in the actual
case involving strong gravitational fields and orbital motion has shown
that the final result is the same in General Relativity [8]. Particular cases
(involving no orbital motion) of this remarkable « field strength indifference»
have been recently worked out by Will [22]. Renormalizing T so that it
measures the same « orbital period » as t leads to the following explicit
expression for the « Einstein delay » of equation (12):

a4
Ap=7ysinU + o<<3> P,,>, (19)
c
with y = e,6/n where
G m'(m+ 2m')
o= . . 20
ctag M (20)

Replacing equation (19) in equations (12) and (16 a) allows one to relate
the eccentric-anomaly-type parameter U to the proper time T:

T —Ty)=U—érsinU, (21)

where é; = ¢,(1 + 6). Equations (21), (16 b) and (16 ¢) give a parametric
« quasi-Newtonian » representation of the motion of the pulsar expressed
in proper time T. This is just what is needed to turn equation (13) into a
well-defined timing formula linking 7, to T. Remarkably enough it is shown
in Appendix A that this timing formula can be further simplified by intro-
ducing a new eccentric-anomaly-type parameter u, defined as a function
of n(T — T,) and of a new eccentricity-type parameter er:=ér + ¢, — e,
[say u = K. (n(T — Ty))] through a usual Kepler equation:

nT —Ty) =u— ersinu. (22)

2.6. The explicit timing formula.

The use of the function u(T) defined by equation (22), together with the
equations (3), (6), (9), (11), (13), (14), (15), (16) and (19), lead to the following
timing formula (see appendix A for some details):

4
D. 1, =T+ Ar(T) + Ag(T) + Ag(T) + Ax(T) + 0((%) P,,), 23)
a, si

1 {sinw [cosu —e,] + (1 — ef)"*coswsinu}, (24)

Ag(T) =y sin u, (25)

AR(T) =
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A(T) = — T log {1 — ecosu — sini [sinw(cosu — e)
¢ +(1=e)coswsinul}, (26)

AN(T)=A {sin (0 +A(w)+e sin  } +B { cos (w+Au))+e cos © 1, (@27)

where T is linked to the number of the pulse N by
1 1.
N=N0+vT+EVT2+gvT3, (28)

and where the slowly-precessing relativistic « argument of the periastron »
o(T) is given by
o = wy + kA (u), (29)

where the function A (x) has been defined by equations (17). (In the previous
and following formulas when there appears an eccentricity e without index
this means that it belongs already to a small relativistic correction and
that e can indifferently be replaced by any eccentricity linked with the
system, e. g. e of equation (22), because er, e,, ey, ... differ only by a few
times ¢ GM/agc?). Posing e, = e(l + 4,), eg = ex(1 + J), we see that the
RHS of equation (23), say T + A, is a function not only of T but of the
following set of 13 parameters:

{&51<i<13} = {n, Ty, er, a, sini, wy, k, 5,, dg, y, M, sini, A, B}, (30)

so that by inverting equation (23) (see below) and replacing the result
in equation (28) one would get N as a function of 7, and of 18 parameters:
Dand {&;1<p<17},

N = A#/(D.1, &, (31

(B < p<17) = { & Ny, 3,7} (32)

The theory of General Relativity gives the following equations between
the parameters &' and the two (Schwarzschild) masses of the binary system,
M = Mpars M = Mgompanion [TEMember M :=m + m’, ag == (M/m’)a,, and
see equations (3.7), (3.8 b), (4.13), (4.15) and (6.3b) of paper I, and equa-
tions (9) and (20) of this paper]

_(SM 1/2[1 + (mm’ g) SM } (33)
"= a3 M? 2agc? |’
3GM

k= o 34
Czak(l - 82) ( )
e Gm'(m + 2m’) (35)

T’ agM

e, —ér

’ =0, = 3m? + 6mm’ + 2m’? }, 36
er czaRM{ e+ Gmm m* ) (36)
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274 T. DAMOUR AND N. DERUELLE

€y — et G 7
=5, = —m2 6 ’ 2 2 ,
o = M { S + Gmm + 2m’? } (37)
na, sin n
A= (38)

" 2mevsin A1 — )12’

B na, cos i cos 19
~ 2mevsin A1 — )12 (39)

where A and # are the polar angles of the spin vector of the pulsar, é;,
with respect to the triad (éx, éy, €;) defined by equations (15):

é5 = sin A cos néx + sin A sin éy + cos Aé;.

It should be noted that our equation (27) for A, differs in two respects
from the corresponding result of Smarr and Blandford [/5] [their equa-
tion (2.7)]: 1) there is an overall sign change due to their non standard
convention ¢, = + n and, 2) the slowly-varying terms Ae sin w and Be
cos w are absent in their result (probably because they were interested
only in the rapidly varying part of A,). It can be noticed also that the
dimensionless relativistic parameters k, d,, g and 6 = ny/e are all of order ¢
where &:= GM/c*ag = Gm'/c?a,(e = 2.14 x 107° for PSR 1913+ 16).
More precisely, in order to estimate the relative magnitudes of the various
effects contained in the timing formula let us introduce an adapted system
of units such that 1 = ag = n(= 2xn/P,). In this system the velocity of light
becomes a pure number c (= cP,/2nag ~ 683.2 for PSR 1913+ 16) and
1/c can be taken as the small parameter of the formal post-Newtonian
expansions (note that ¢ ~ 1/c?). Then the Roemer time delay Ay is (nume-
rically) of order 1/c, the Einstein time delay Ag is of order 1/c?, the Shapiro
time delay Ag is of order 1/c® and the aberration time delay A, is of order
(P,/Ps).(1/c) (where P, := 1/v). For PSR 1913+ 16 P,/P, ~ 2.115107¢ ~ 1/c2,
so that A, is of order 1/c* like As. We shall assume here that A, is always
small enough to be able to neglect any product of A, by another small term.

2.7. The inverse timing formula.

Finally let us give explicit formulas for inverting equation (23), i.e.,
posing for simplicity’s sake
t:==D.1,, (40)
A(T) == Ar(T) + Ax(T) + As(T) + Ax(T), (41)
for solving the equation (23), t = T + A(T), for T:
T=rt—At). (42)

Annales de I’ Institut Henri Poincaré - Physique théorique



GENERAL RELATIVISTIC CELESTIAL MECHANICS OF BINARY SYSTEMS. II. 275

A first, sufficiently accurate, explicit expression for the function At) is
obtained by iteration and should be convenient to use in a computer pro-
gram:

Alt) = At — At — AQ)) + 0<c—l4>. (43)
Posing
Agg(T) == A(T) + Ag(T), (44)
equation (43) can also be written as:
_ 1
A(t) = Arg(t — Agg(t — Arg(t)) + As(t) + Ax(t) + O <c—4> (45)

Let us emphasize that A(t), Agg(t), ... denote the values of the mathe-
matical functions A(T), Agg(T), ... taken for the value T = t of the inde-
pendent variable, as computed by replacing T by ¢ in equation (22)
[for instance Ag(t) = y sin K, (n(t — To))]. It is easily checked that in
computing the iterations of equation (45) w can be considered as a constant
[= wo + kALK (n(t — Tp))]. Let us also quote another explicit analy-
tical expression for A(t). Posing

a, sin i

o sin w, (46)

¢
Be=2r )12 cos ), @7)

Cc

Agg = a(cosu —e,) + (f + y)sinu, (48)
Agg = —asinu + (f + y)cos u, (49)
Afg = —acosu — (B + y)sinu, (50)
n:=n/(1 — ercosu), (51)

one has
= 1 ”
A(t)=Agg X { 1 — fAkg+ 1%(Age)? +§ n*AreARg

1 sin
I uatts |+ A1) + 850, (52)
2(1 — ercosu)

where u = K, (n(t — T)) is the solution of u — ersinu = n(t — Tp).

3. CONSEQUENCES OF THE TIMING FORMULA

The 18 parameters appearing in the full timing formula (31) can be
classified in 9 classical parameters, {n, Ty, er, a,sin i, @, No, v, v, V },
6 relativistic parameters {k, v, ,, 99, m’, sini }, 2 aberration parameters
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{A,B} and the Doppler parameter D. The 9 classical parameters are
easily measurable because they correspond to time delays of order 1/c.
In the timing model presently used by Taylor and coworkers for PSR
1913416 only 3 relativistic parameters are explicitly introduced and A,
B and D are not included. In this section we shall investigate in detail the
effect of including the parameters D (§ 3.1), A, B (§ 3.2) and the full 6 rela-
tivistic parameters (§ 3.3-§ 3.8).

3.1. Effect of the relative motion between the solar system
and the binary system: D.

In the timing model presently used for analyzing the arrival times of
the signals from binary pulsars the Doppler factor D is replaced by one,
on the grounds that probably v,/c ~ 1072 so that D will introduce only
small constant relative errors in the measured elements of the binary
system. However in view of our total lack of a priori knowledge of the
exact value of D it is important to investigate precisely its influence on
the measured elements. Moreover it is especially important to control the
effect of D on the tests of relativistic theories of gravity performed when
enough parameters are measured. Indeed if all the « measured » elements
contain relative errors ~ D — 1 ~ a few per thousands then a test involving
several of these elements (4 in the case of P,) might be intrinsically vitiated
at the level of may be a percent. Another reason for investigating the precise
role of D is that a recent work of Portilla and Lapiedra [/4], analyzing
the motion of the binary system in the center-of mass-frame of the solar
system, has suggested that the relative motion between the two systems
could induce additional apparent orbital period changes.

What is needed is to compare the « wrong » parameters &%, . obtained
by fitting the measured arrival times 1, by means of the formula

N = ‘/‘/‘(Taa é&rong)’ (53)
to the « true » parameters &, satisfying:
N = #(D.17,, Eh)- (54)

The answer is easily obtained if we notice that the number measuring
the arrival times 7, in the unit system (CGS)p, = (D x cm,D x gr,D x sec)
is D! times the number measuring 7, in the usual (CGS) system. Moreover
the numbers measuring Newton’s constant G and the velocity of light ¢
are the same in (CGS)p and in (CGS). Then it is easily seen that the effect
of « forgetting » D and still using equations of the type (33)-(39) to connect
the « measured » parameters &% . to the dynamical parameters of the
system (ag, m, Py, er, ...) is equivalent to measuring inadvertently the latter
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dynamical parameters in the (GGS)p system instead of the (CGS) one
(hence alvivrong — a{{me/D’ mvrone — mtme/D’ P;vrong — Plt,rue/D’ ev_l_vrong — e}]_me,
etc..). An important consequence of this type of error is that, because of
dimensional analysis, it will leave « invariant » any test of relativistic
theories of gravity (involving only G and ¢): for instance the « P, » and
«sin i » tests now performed in PSR 1913+ 16 [/9] must be equally verified
or falsified using the « true » or the « wrong » parameters. This conclusion
does not apply to tests involving other physical constants (€. g. h, M otrons ---)
whose numerical values are changed in the (CGS)p system: an example
would be the test that m must be smaller than the maximal mass of a neu-
tron star. We reach also the conclusion that the work of Portilla and
Lapiedra [14] is misleading and concerns only coordinate effects (assuming
that both 7 and ¥, are constant in time to a high enough accuracy for
allowing one to consider the orbital period shift; D = Pje/Py¢ as
constant).

3.2. Effect of the aberration: A, B.

As was noticed at the end of § 2 the aberration time delay A, is of the
same order of magnitude (1/c* ~ 20 usec) as the Shapiro time delay in
the binary pulsar PSR 1913 + 16. Moreover as our formula for A,,
equation (27), contains secularly changing terms omitted by Smarr and
Blandford [15] it is important to reconsider the possibility (apparently
excluded by Epstein [//] although without detailed proof) that the aberra-
tion effects might be detected. Such a detection would give the first direct
evidence that pulsars are indeed rotating beacons.

A straightforward calculation shows that the function Y (T, g, x, er, €., €;)
introduced in appendix A satisfies the following relations:

Y Y Y ) . 1
X—+e——2e = xsin(w+A (w)+xesinw+O0O{— ), (55
0x der Oe, c?
Y 1
(1—e?)t/? 55 = Xeos (@+A(w)+xecosw+ 0| |. (56)
o c

From these relations, and the fact that Ag(T) = Y(T, —nT,, (a, sin i)/c, er,
e,, ¢g) we deduce that we can absorb exactly A, into Ay by making the
following replacements in Ag: —nTy —» — nTy+(1—e?)%eg, (a,sini)/
¢ > (a,sini)/c.(1 + ¢€4), er = egf(l+¢s), e, = e(1—2¢,) and ey — ¢
where we have introduced ¢, := cA/a, sin i and &g := cB/a, sin i. Therefore
if we omit A, from the timing formula, as is done by Taylor and coworkers,
we shall « measure » for instance (a,sini)*™ ¢ =(1+¢,) X (a,sin i)™,
ey = (1 + g4)ef™, etc... Now if the spin axis of the pulsar €5 is not ortho-
gonal to the plane of the orbit it will slowly precess by a few degrees per
year for PSR 1913+16 [I0] [/]. This will induce secular variations of
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(a, sin i)*™"¢ and ey™"¢ of relative order ~ 107¢ in 10 years. It would
be interesting to reanalyze the observational data and to look for such
secular variations of (a, sin i)*™" and e}™¢. If no such variations are
found this will confirm the hypothesis (already suggested by the absence
of variation of the average pulse shape) that ¢; is orthogonal to the orbital
plane. If we further assume that é; is parallel, rather than antiparallel,
to the orbital angular momentum (as seems plausible from evolutionary

considerations) we can determine A and #: A =i and # = — n/2. Hence
we can compute Ay:
Ay = Ay [sin (@0 + Au)) + esin w], (57 a)
with
Ao = na,/2nevsin i(l — e?)V/?). (57 b)

Numerically one finds for PSR 1913 + 16, A, = 12.1 u sec and
es = 5.18 x 1075 Note that ¢, is comparable to the present relative
error for e as measured by Weisberg and Taylor [19]. In order to be able
to meaningfully take advantage of the ever increasing precision on the
classical parameters of the system, we therefore propose, granted that
it has been checked that no secular variations of (a, sin i)*™" and e¥rne
are present, to include A, = Ag(sin(w + A () + esin w) in the
timing formula as a parameter-free contribution (i.e. A, being computed,
Ao = 12.1 usec, instead of fitted for).

3.3. The post-Newtonian periodic (PNP) parameters.
Among the six relativistic parameters, three (k, d,, 3,) appear at lowest
order in the Roemer time delay,

Ax=221 4 i (@0 + kALW)) [cos u—ex(1+8,)]

¢ + (1 — 314802 cos (o + kA ) sinu }, (58)
one (y) appears at lowest order in the Einstein time delay,
Ag =vysinu, (59)
and the remaining two (m’, sini) in the Shapiro time delay

2Gm’
3

Ag = — log {1 — ecosu — sini [sin w(cos u — e)

+ (1 —e’)'"?coswsinu]}, (60)

where w = wo + kA ().

7 contributes at the highest order (1/c?) among the relativistic para-
meters but can be separated only with difficulty from the measurement
of the classical parameter (1 — e%)!/2qa, sin i cos w, (it is now measured
with a relative precision of about 3 9, [19]).
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k contributes only at the formal order 1/c* but in a secular way which
makes its measurement both easy and precise (relative precision better
than 104 for kn = @ [19]).

The four remaining parameters, J,, d,, m’ and sin i, all contribute at the
order 1/c* in a quasi-periodic way. In the post-Newtonian timing model
of Epstein [//] only one such Post-Newtonian-Periodic (PNP) parameter,
say (sin i)g, was introduced. This reduction in the number of PNP para-
meters was achieved by expressing all PNP parameters (in our model §,,
dg, m’ and sin i) in terms of sin i, of the classical parameters n, ey, a, sin i,
and of y by means of equations (18), (33) and (35), and then by holding n,
ey, a,sini and y fixed at their already measured value. This procedure
has been applied by Weisberg and Taylor [19] and has led, after replace-
ment of the wrong equation (A 28) of Epstein [/1] by the correct periastron
precession (see €. g. equation (29) above), to the measurement of (sin i)g
with a relative precision of 20 %.

We wish instead to investigate here the possibility of measuring simul-
taneously several PNP parameters, thereby hoping to get new tests of
the model, and in fact, strictly speaking, (as discussed in the introduction)
to get the first real tests of the relativistic theory of gravity used in the
description of the binary system.

3.4. The timing formula in other relativistic theories of gravity.

Let us first emphasize that the structure of the timing formula (22)-(29)
will probably be the same in most viable relativistic theories of gravity:
only the precise equations (18) and (33)-(39) linking the relativistic para-
meters between themselves and to the « inertial masses » of the two objects
will depend upon the theory of gravity used to study the motion of the binary.

Indeed the simple quasi-Newtonian structure of Ag(T), equations (24)
with (22), comprising 3 relativistic parameters k, (e, — ey)/erand (e, — ey)/er,
was a straightforward consequence of the structure of the quasi-Newtonian
solution (16) and of the structure (19) for A;. Now, as can be seen from the
proof used in paper I, the quasi-Newtonian structure for the motion is a
consequence of the existence of a general post-Newtonian Lagrangian
L =L, + ¢~ ?L, (where L, is a polynomial in the velocities and in the
interaction potential) and of a relativistic center of mass theorem. Now
such a Lagrangian and such a theorem exist for most viable relativistic
theories of gravity (even for the motion of condensed objects, see [20]).
Moreover it seems that Ag has the same structure in all theories of gra-
vity [20]. Besides, the contribution to Ag due to the companion, being a
weak field effect, will have always the same structure (but it can be shown
that the coefficient in front, —2Gmr'/c?, will be replaced by — G(o% +y%)m,/c
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in the notations of Will [20], chap. 11). Therefore if we assume that the
strong field effects of the various relativistic theories of gravity can be
treated, with respect to their influence on the timing formula, in a way
at least qualitatively similar to the strong field effects of General Relativity
a final timing formula of the type (22-29) should result. Consequently
any attempt, as suggested here, to measure independently (i.e. without
assuming any relations, & la Epstein, between them) several PNP para-
meters will yield direct tests of the theories of gravity.

3.5. The differential timing formula.

Let us first recall that the way the various parameters (except D, see § 3.1)
appearing in the full timing formula (31) are « measured », starting from
initial estimates of the parameters, say &f4), is the following: 1) determine
the ordinal number N, of the pulse which arrived at the « time » t, = D1,
as being the integer nearest to A/ (t,,, &%), 2) compute the actual « residual »
Reewal(t ) .= (N (t,, &) — N,)(ON/Ot)y), 3) estimate the corrections,
o0&y = & — &), to be added to &) by a least-squares fit of

Ryt,) = — (aJV/at)(_l)1 Z(@/V/af“)(l)éff‘l)

to the actual residuals R*"“?(z,), 4) iterate the process (see [3] [1/]).
With sufficient accuracy one finds for the contributions of the parameter
corrections to the residuals (« differential timing formula » ):

i=

with Ct, &) = dA(t, &)/0E, A(t, &') being the function (41), defined by
equations (22)-(27), taken at the value T = ¢, with { &'; 1 <i < 11} being
the set of parameters (30) minus A and B. One finds explicitly (posing

X = a, sin i/c, and using o := — nT, instead of T,)
Comx [—sinwsinu + (1 — e?)!/? coswcosu], 62a)
1 —ecosu
C,=t.C,, (62b)
C.,=sinuC, — xsinw — (1 — e?)" "2excos wsinu, (62¢)
C,=sinw(cosu —e) + (1 — e?)**cos wsinu, (624d)
Coo=x [cosw(cosu —e) — (1 — e*)?sinwsinu], (62¢)
Ce= Alu).C,, 62f)
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C,=sinu, (62g)
Cs;,= —exsinow, (62 h)
Cs,= — (1 — e*)"Y2e*xcos wsinu, (621)

2G S 2172 ;
Cw= ——log { 1—ecos u—sin i [sin o (cos u—e)+(1—e?)'? cos wsin u] },
C
(62))
2Gm’ sin w (cos u—e)+(1—e?)'/? cos w sin u

Csini = 3 .. N 27172 . ’ (62 k)

¢’ 1—ecosu—sini[sin @ (cos u—e)+(1—e?)'/? cos w sin u]

ith

W nt+o=u—egpsinu, (63 a)
W= wo + kAJu). (63 b)

As the fit is an iterative procedure, we have kept only the largest term in
each partial derivative (62) and we have replaced (after differentiation)
all the eccentricities by e(= e say).

Secular variations (beyond post-Newtonian order) of the elements x,
er and P, = 2n/n can be incorporated by making the replacements

0x — Ox + tdéx, dey — Oder + tder, 0P, — 0P, + = t(SP,, (corresponding
tox — x + tx, etc. in (31)) [3].

Then one can estimate the accuracy with which the &* (1 < u < 17)
will be determined when fitting the R(t,) = ZL1Z;C,(t, é(l))éé(l) to the
actual R*™2(t,)(= C,0&k .. + noise) by constructing the covariance matrix
of the o6&, : V¥ = ((8&, — (&, D). (68, — ( 8Ely>) ). Assuming
that the timing noises of the arrival times ¢, are uncorrelated, and have
the same variance, say & (if this last condition is not satisfied it is sufficient
to introduce appropriate weights in all the quadratic forms) the covariance
matrix V*’ is given by inverting a 17 x 17 matrix:

-1
VH = 82<2 Cp(tm é(l))cv(tm é(l))> (64)

a

(where we use the subscript a as an index numbering the arrival times).

3.6. Primary fit and « periodic approximation ».

The contributions of the 4 post-Newtonian periodic parameters 9,, Jy,
m’ and sin i to A(t) are only of about 20 u sec, i. €. at the level of the present
timing errors & Therefore there will be some hope of measuring them
only if they can be cleanly separated from the stronger signals associated
with the classical parameters even when neglecting all secular effects
(indeed the parameter y contributes much stronger signals but has been
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measured only with a reduced accuracy because it is separable from the
classical parameter (1 — e3)'/?a, sinicos w only in presence of a secular
periastron precession). Hence it seems appropriate to estimate the measu-
rability of the four PNP parameters by following the procedure used by
Blandford and Teukolsky [3], hereafter referred to as BT, in their primary
fit concerning an ensemble of measurements done during a time interval
much smaller than the post-Newtonian time scale (~ 90 years for PSR
1913+16). This procedure consists in introducing instead of the 17 &*
a convenient set of independent parameters which absorb all the purely
secular time dependence in the sense that these parameters can be expressed
as short polynomials in the time ¢ and that the coefficients of the differential
timing formula corresponding to these parameters have only a periodic
explicit dependence on t. These restrictions (useful if one wanted to do a
secondary fit as in BT) oblige us to split the slowly precessing periastron w
(equation (29)) in a purely secular part wg (as used by Epstein) and a purely
periodic part kB(u) (wrongly omitted by Epstein)

o = wg + kB.(v), (65)
where .
Wg =Wy + ot — Tp), (66)
(w denoting k.n) and
Bu):=A.(u) —u+ esinu. (67)

Introducing f:=e/(1 + (1 — ¢*)!/?), the purely periodic function B,(u)
can be expanded as (using formula C of chapter XIII of Tisserand [/8])

. : T, . Lo
B.(u)=esin u+2[ﬂ sin u+§ﬁ2 sin 2u+§ B3 sin3u+ .. :, (68)

Now a convenient set of parameters adapted to a primary fit covering
a time interval « Py/kis { #'; 1 <i < 10} with
1 -1 Doso L oase
ont=—v 5N0+t5v+5t5v+gt6v ,
n*=xsinwg, n°=(1—e?)"2x cos wg+y,
omt=—do—tén, n=er, {n;6<i<10}={4,, 8, m sinik}.

The corresponding differential timing formula reads (to leading order)

10

R(t) = Z Bdr', (69)

i1
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with
B, =1, (70 a)
B, =cosu —e, (70 b)
B; = sinu, (70 ¢)
B, = (agsinu — fgcosu)/(l — ecosu), (704d)
Bs = — [og + (g sinu — g cos u)sin u/(1 —ecosu)], (70 e)
B, = — eag, (701)
Bs;, = — (1 — €?) e*Bgsinu, (70 g)
B, =C,, (70 h)
Bsini = Csini > (704)

B, = [(1 —e?) ™ Y2Bg (cos u —e) — (1 — e?)'?ag sin u].B,(u), (70j)

where ag = xsin wg, fg = (1 — €3)'/*x cos wg.

The first 5 parameters ' (1 < i < 5) correspond to the five parameters K,
a, 7, £ and e of BT. The last term B, =(0A/0w). B.(4) comes from keeping
in the full coefficient of k in the residual, C, = (0A/0w). A (u), only its
purely periodic part (its purely secular part (0A/dw). n(t — Tp) being contained
in (B,0n?*/0wg + B3on/0wg)dwg). However k = w/n is best measured
with good accuracy because of its secular influence in wg and not because
of its tiny periodic contribution B,dk to the residuals. Therefore when
estimating the measurability of the 4 PNP parameters { J,, 8y, m’, sini }
we can consider that k is already accurately known (6k = 0) and that it

9

is sufficient to fit a reduced timing formula, R(t) = B;6n'; involving
i=1

only the 5 BT parameters and the 4 extra PNP parameters. The covariance

matrix corresponding to such a primary fit will be ¢* times the inverse of

the 9 x 9 matrix B;; = ZB,{ta)Bj(t,,).

Following BT we shall further assume that the measurements are regularly
distributed over the orbital phase so that the latter matrix can be approxi-
mated by

2

1
B;; =N x o du(l — e cos u)B{u)B(u), (71)
T Jo

where N is the total number of measurements, and where, as we consider
an ensemble of measurements done in a time « P,/k, we can approximate
og and fg by constants during the integration (this defines what one can
call the « periodic approximation » ).
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3.7. « Unmeasurability » of the periodic relativistic corrections
to the motion : §,, J.

The PNP parameters J, and &, describe purely periodic relativistic
corrections to a Keplerian motion. Measuring them would provide stringent
tests of the theories of gravity. However it is apparent from the explicit
expressions (70) that, in the « periodic approximation », the corresponding
« signals » B;_ and B;, are constant multiples of, respectively, B, and B;.
Therefore we get the remarkable result that, in the latter approximation,
the post-Newtonian periodic parameters 8, and d, are not separable from
the measurement of the respective classical parameters — v~ 15¢(t) (¢ being
the phase of the pulsar) and fg (+ 7). Moreover, from what has been said
in § 3.4 this result holds not only in General Relativity but in all relativistic
theories of gravity. Note however that in the long term J, can in principle
be measured when wg has changed by a sufficient amount, but previous
experience with the measurement of y suggests that it will be very difficult
to measure d, with any decent accuracy. On the other hand it seems hopeless
to measure , because the secular variation of B;, = — exg can be absorbed
in 0¢(t) = 0Ny + tév + t26v/2 + ...

Besides, the « unmeasurability » of §, and J, has the interesting conse-
quence of clarifying the significance of the « global » parameter (sin i)g
which is not as global as it seemed a priori. Indeed the only physical effects
playing a role in the measurement of (sin i); will come from the Shapiro
effect.

The results of this section lead us to propose (like for the aberration effect)
to replace, in the timing formula, J, and J, by their numerical values (as
computed from the already known parameters) without trying to fit for them.

3.8. Measurability of the Shapiro effect : m’, sin i.

In view of the results of the preceding section the only hope to get genuine
tests of the theories of gravity is to try to measure simultaneously the
remaining two PNP parameters m’ and sin i (which describe the Shapiro
effect). To estimate the measurability of sin i and m’, we must now consider
the 7 x 7 covariance matrix corresponding to the 5 BT parameters and m’
and sin i. We have estimated this matrix numerically as ¢ times the inverse
of the corresponding 7 x 7 matrix B;;, equation (71). In order to compare
the relative accuracies obtainable on sinj and m’ it is convenient to intro-
duce the dimensionless variables s and p such that sin i = (sin i)(1 + s),
m’ = (m’)q)(1 + p), ((sin i)y, and (m’),, being current estimated values).
We find that the matrix B;; is indeed invertible, and that taking
eqy = 0.617, x4y = 2.34 sec, (sini)y, = 0.72, Gm'(;)/c* = 6.86 psec and
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wg = 5m/4 (values appropriate to PSR 1913+ 16 in March 1985) the cor-
relation and standard deviation of s and u are (keeping only three digits):

pus = — 0.836, (72 a)
o, = 101¢/\/N, (72 b)
6, =474¢/ /N . (72¢)

If instead of measuring simultaneously s and u one measures only one of
them, fixing the other one to its calculated value, the corresponding ¢’s
are smaller than their respective values above by the factor (1—pZ,)'=0.549.
On the other hand if instead of trying to measure both s and u one decides
to fix some relation between them (say u = As with a fixed slope A, which
is equivalent to posing m’oc (sin i)* and only then to measure say s, then
one can show that the corresponding standard deviation will be

oW — o (1 — pis)”?
’ * [1 - zpus(j'as/au) + (/10'5/0.1‘1)2]1/2 '

Such a procedure, measuring « globally » sin i by fixing a relation between m’
and sin i, corresponds to the sini test proposed by Epstein (taking into
account the irrelevance of the other PNP parameters as proven above).
The relation between m’ and sin i chosen by Epstein (y = fixed quantity)
amounts to choosing aslope A = (m + 5m’)/(m + m’) = 3for PSR 1913+ 16
(as easily obtained from Epstein’s equation (A 29)). For such a positive
value of A, the negative correlation p,; implies that the measurement of
sin i a la Epstein is easier than the measurement of sin i alone and therefore
a fortiori easier than the measurement of sin i simultaneously with m’
(according to equation (73) one finds ¢¥ = 6,/2.87). Now Weisberg and
Taylor [/9] who have recently measured « sin i » in « following essentially
the procedure outlined by Blandford and Teukolsky and Epstein » (see
however §3.9) attribute to their measurement a relative uncertainty of
20 %; which however is, according to what they say, at least twice the formal
standard deviation (which should correspond to our ¢¢*) (*). We can bring
together this information with our estimates (72), (73) which should give
an indication of the relative measurability of s, u and s¥ through the values
of the ratios 0,/0, = 4.69, 0,/c'>) = 2.87, etc... (the absolute values of our
estimates for o,.. are somewhat less reliable because the actual fitting
procedure combines data spanning 10 years while we have used a « quasi-
periodic approximation » which neglected secular effects). This indicates
that if one tries to measure simultaneously sin i and m’, it should be possible

(73)

(*) According to a recent report [23] the precision in the measurement of « sin i »
by Taylor and Weisberg has recently been improved by about a factor 3. This should
make much easier the simultaneous measurement of sin i and m’ proposed here.

Vol. 44, n° 3-1986.



286 T. DAMOUR AND N. DERUELLE

to get sin i with an acceptable accuracy (o, ~ 30 %). Such a measurement
would have a clear physical significance contrarily to the present « global »
sin i measurement. On the other hand the same procedure indicates that
in such a measurement the relative uncertainty on m’ could be quite high
(o, > 100 9%). However we must remember that our estimates above (72),
(73) on the one hand are probably pessimistic (because taking into account
secular effects should improve the measurability of m’ and sin i) and on
the other hand are based on a linearized least-squares fit and are therefore
valid only for small corrections 6 sin i, dm’. As m’ plays the role of an overall
« amplitude » factor in the Shapiro time delay Ag (60), it seems plausible
that if sin i (which influences the « shape » of Ag) is indeed measurable,
when trying to measure it simultaneously with m’ (as our estimates suggest),
then it should be also possible to constrain m’ to belong to a useful range
of values. Therefore a (may be non-linearized) fit to the fully parametrized
Shapiro time delay Ag (sin i, m’) should give valuable constraints on the
simultaneous values of sini and m’ as some type of elliptic-like region in
the (sin i, m’) plane (elongated in the m’ direction). Using the accurately
known mass function of the system this information will lead to a valuable
constraint on the simultaneous values of m and m’ as some allowed bounded
region of the (m, m’) plane. This would represent a definite improvement
on the presently available sin i-constraint which leads to an allowed infinite
strip in the (m, m’) plane. In alternative theories of gravity the analysis
of this constraint must take into account the facts that the « amplitude
factor » m’ of As becomes (a3 + y$)m,/2 (in the notations of Will [20],
chap. 11) and that the equations (33)-(39) are also modified (see [20]).

3.9. Comments on a work of Haugan.

While finishing to prepare this work for publication we received a
preprint by Haugan [/2] which gives in detail the timing formula actually
used by Weisberg and Taylor in their latest work which led to the measure
of one post-Newtonian quasi-periodic parameter say (sin i)y, H standing
for Haugan to distinguish it from the (sin i) = (sin i)® (A = 3) 4 la Epstein
and from our (sin i). This timing formula is essentially the original one
of Epstein [//] with correction of the oversight of Epstein replacing w,
equation (29), by wg, equation (66). Haugan separates explicitly the effects
of the secular (wg) and of the periodic (kB,(u), equation (67), in our notations)
parts of w both in the full timing formula and in the differential timing
formula. In our notations this consists in expanding the Roemer time
delay Ag = x [sinw(cosu — ¢,) + (1 — €3)*/? cos wsinu] according to:

Ag = x [sin wg(cosu — e,) + (1 — €F)"/? cos wgsinu]

+ kxB,(u). [cos wg(cosu — e) — (1 — e?)'?sinwgsinu],  (74)
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and in replacing everywhere else w by wg (these operations lead to errors
that are uniformly-in-time negligible). The same separation is also per-
formed in the corresponding differential timing formula (similarly to what
we have done in §3.6 in our discussion of the primary fit for the PNP
parameters). Then the measure of the post-Newtonian parameter (sin i)y
is defined in even a more « global » manner than (sin i)g by constraining
not only m’ to be function of sin i via fixing y but also constraining k (as
it appears explicitly in the second term of equation (74)) to be function
of sini via the equation (34) with fixed x = a,sin i/c. In our opinion the
« global » nature of such parameters (which can imply, as discussed in § 3.8,
a somewhat artificial improvement in their measurability) makes their
measurement only of weakened significance as tests of the model. Stronger,
cleaner and more numerous tests are obtained when measuring several
independent parameters.

Pursuing this philosophy we can even propose to try to get further tests
of the model by fitting simultaneously for the post-Newtonian parame-
ters m’, sin i, ® and k. The parameter k denoting now the factor appearing
explicitly in the second term of the expanded Roemer time delay (74)
(replacing our previous equation (24)), and @ being the parameter appearing
in equation (66) defining wg (@ and k being considered as independent
parameters parametrizing respectively the secular and the quasi-periodic
effects linked with the relativistic advance of the periastron). Then the
a posteriori verification or falsification of the relation @ = kn will provide
a test of the « cleanness » of the system (no non relativistic contributions
to ). Note that the test @ = kn will not provide a test of the relativistic
theories of gravity because in all such theories the periastron advances
at the rate w = wg + kA.(u) = wo + kn(t — Tp) + kB (u).

If this extra-test could not be performed with an adequate accuracy it
should anyway be replaced by a study of the average post-fit residuals
plotted as a function of the orbital phase. This plot should exhibit no
significant dependence on the orbital phase and should show a 1/\/ﬁ
decrease in function of the number N of measurements used for any given
orbital phase. Indeed the fact that the corresponding plot in Taylor and
Weisberg [17] (their figure 4), using the uncorrected Epstein timing model,
does not show such a l/ﬁ reduction prompted us to reexamine ab initio

the problem treated in this article.

4. RECAPITULATION

In this article we have derived a new timing formula for the arrival
time analysis of a binary pulsar (§2). The full inverse timing formula,
N = N(z,), can be written compactly by iterating the relativistic time
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delays [equations (42)-(45)] [the corresponding differential timing formula
(residuals) is given in § 3.5]. This timing formula is much simpler (in its
description of the effects due to the relativistic motion of the pulsar) and
more complete (in its description of relative motion and aberration effects)
than the presently existing timing formulas which are being used to fit
the observational data of the Hulse-Taylor pulsar PSR 1913+ 16.

Using this formula we have first proven (§ 3.1) that the relative motion
between the solar system and the binary system cannot be detected in
the observational data and leads to measuring « wrong » parameters
for the binary system corresponding to using unawares a modified system
of units: (D x cm, D x gr, D x sec), D being given by equation (5).

As for aberration effects (§ 3.2) we have shown that, if the spin of the
pulsar is not orthogonal to the orbital plane, part of the aberration effects
can in principle be detected by looking for secular variations of (a, sin i)**"2
and eY™® as deduced by fitting the data to the presently existing timing
formulas (which do not include aberration effects). Such a detection would
provide the first direct evidence that a pulsar is a rotating beacon. If no
such variations are found we propose to assume that the spin vector of
the pulsar is parallel to the orbital angular momentum and to include
the correspondingly simplified and calculable (from the existing data)
aberration effect as a parameter-free contribution to the timing formula
(i. e. without trying to fit for it).

Our simplified treatment of the relativistic effects due to the orbital
motion of the pulsar (based on our previous work I) has moreover allowed
us to reach the following conclusions not easily obtainable from the intricate
timing formulas presently in use. The first conclusion (§3.7) is that the
quasi-periodic relativistic effects coming (in a harmonic coordinate system)
from the non secular relativistic corrections to the Keplerian orbital motion
of the pulsar are practically not detectable in the data (only one of them,
parametrized by 8, = (¢, — er)/er, may be measurable, although probably
with reduced accuracy, in the long term thanks to the secular periastron
precession). This result holds in all relativistic theories of gravity, showing
that the only post-Newtonian timing effects that are detectable are the
effects linked with the relativistic advance of the periastron and the effects
linked (in harmonic coordinates) with the variable Shapiro time delay due
to the propagation of the radio pulses in the weak relativistic gravitational
field of the companion.

We therefore propose, and this is our second conclusion, to try to extract
more information from these effects than is done now. In the presently
used fitting procedure only one parameter linked globally with all the
quasi-periodic post-Newtonian timing effects is measured. We propose
instead to measure simultaneously two independent parameters (m’
and sin i) giving the amplitude and the shape of the Shapiro time delay.
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This measurement could provide not only a new test of the model but in
fact the first test of the model which is independent of any hypothesis of
« cleanness » of the system and thereby the first real test of the relativistic
theory of gravity used in describing the motion. We have given a rough
estimate (§ 3.8) of the relative accuracy which could be achieved in such
a test by means of a « periodic approximation » (§ 3.6). This estimate
shows that such a new test is possible in principle (o g4q; # T+ 1) but that
probably some kind of non-linearized fit will be necessary to get useful
constraints on the allowed values of m’ and sin i.

Finally in §3.9 we suggest, without estimating its feasibility, an addi-
tional test (based on the effects linked with the relativistic advance of the
periastron) which however will not be a test of the relativistic theories of
gravity, but only of the « cleanness » of the system.
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APPENDIX A

Let us define a function Y of the 11 variables T, o, n, ey, €., e, e, ®q ,h, k and x by the
following parametric representation:

Y = x [sinw [cosu — e.] + (1 — e2)"/? cos wsin u], (A1)

® = wo + hsin f+ kf, (A2)
1+e\?

f = AJu) = 2arctan tan— |, (A3)
1-e 2

nT+o =u —ersinu. (A4)

In order to obtain the explicit expression of Y(T, ...) one must solve the Kepler equation (A4)
in u (we assume ey < 1), and replace the result, say u = K, (nT + 0), in (A1-3). In our
problem Y will represent the Roemer time delay Ag, i.e. (sini)/c times the ordinate of
the position of the pulsar in the orbital plane expressed as a function of the « proper time » T
of the pulsar and of various other Newtonian and post-Newtonian parameters. We can
consider as basic Newtonian parameters o (= —nT,), n, er, w, and x. The post-Newtonian
parameters (numerically of order Gm’/c%a,) will be (e, — eq)/er, (e, — ey)/er, hand k. Because
of these orders of magnitude Y is in fact independent, to order O(1/c*), of the eccentricity-like
parameter e as long as e = er + O(1/c?) which will be the case in our problem.

It now happens that the function Y (T, er, e, e, b, ...) satisfies some remarkable mathe-
matical identities which have important physical implications for the measurability of
various physical effects: for instance equations (55)-(56) of the text and equation (A5) below.
Using well-known techniques for differentiating implicit functions and the equation (17¢),
a straightforward calculation indeed shows that:

oY N Y 1 aY + O<l> (A3)
der 6—es_1—ezt3h A

This means that if ¢ is an arbitrary number of order O(1/c?) then

€ 1
Y(T, er+éee,e,+ e h— N 5 > = Y(T, er, e, €5, h,..) + O<—4—> , (A6)
¢

in other words Y is invariant under a proper simultaneous shift of er, e; and h of post-
Newtonian order.
Now the parametric representation of the Roemer time delay,

N L .
Ap = ——n.7 =+ —sini.r.sinf, (A7)
Cc

o=

using the eccentric-anomaly-type parameter of the « quasi-Newtonian » solution of paper I
(denoted U here, and u in I) i. e. using equations (16 b), (16 ¢) and (21) of this paper, is
Ag = x(1 — e, cos U) sin [wy + (1 + k)A.,(U)], (A8)

where x:=a,sini/c. If we were to develop directly (A8) using sin (x + f) =sina cos f + cosasin f
with & = wo + kA, (U) and g = A_,(U) this would lead (with equations (17)) to a troublesome
ratio (1 — e, cos U)/(1 — e4cos U). One way for eliminating such a ratio is to use the
following trick. It is easy to check that

AU)
de  1—e2

sin A(U), (A9)
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so that we can write

° 1
A, (U) = A, (U) + hsin A (U) + O<—4>, (A10)
c
with
pof (Al1)
1-e2’
This allows to decompose 6 in o’ + f’ with
o = wo + hsin f + kf (A12)
and
B = A.U). (A13)

Now the standard addition formula for sin (a’+ p’) introduces the ratio (1—e, cos U)/
(1 —e,cos U) = 1. Remembering equation (21) this leads to the following expression
for Ag expressed as a function of T:

Ar=Y(T, 0= —nT,, er=8r, e.=e,, e,=e,, h=h, x=a,sin i/c). (A14)

This expression is already simple and « quasi-Newtonian » (compared to the much more
intricate corresponding expression of Epstein [/]]) but it can be even further simplified.
Indeed by using the transformation (A6) with ¢ = e, — e, we can transform h to zero, i.e.
get a simple advance of the « periastron argument » @ = w, + kf, instead of equation
(A2) = (A12). This leads to

AR = Y(Ta eér = é'l” + e —e,e =ée,e = e, h= 0)9 (Als)

with still 6 = — nT, and x = a, sin i/c, which is precisely the result given in equations (22),
(24) and (29) of the text.
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